The braids Package: Documentation

Andrew Stacey
loopspace@mathforge.org

v2.3 from 2024/01/09

1 Introduction

This is a package for drawing braid diagrams using PGF/TikZ. An example fol-
lows.

\begin{center}
\begin{tikzpicture}
\picl
rotate=90,
braid/.cd,
every strand/.style={ultra thick},
strand 1/.style={red},
strand 2/.style={green},
strand 3/.style={blue},
] {braid={s_1 s_27{-1} s_1 s_27{-1} s_1 s_27{-1}}};
\end{tikzpicture}

\end{center}
4 4 /T
. \ L

This is actually the documentation for two packages: a package and a TikZ
library. If your preamble contains \usepackage{braids} then you are using the
package, if \usetikzlibrary{braids} then the library.

The package was the original version, and then with the advent of pics I
rewrote it as a TikZ library. If you are starting afresh then you should use the
library, but I recognise that people might have figured out how to get what they
want with the old package and don’t need to switch. So although the original
package should be considered depreciated, it is not (yet) obsolete. I will continue
to fix bugs for the original package, but new features only go in the TikZ library.

The best place to report bugs or make suggestions for improvements is on
github. There have been several excellent suggestions made there, and for v2.3
I am particularly indebted to Niles Johnson who not only contributed ideas but
also helped considerably with clarifying the documentation.

2 TikZ Library Usage

Version 2.0 changed the implementation to use the TikZ pic syntax. It also
converted it to a TikZ library, so to use it put the following in the preamble.

\usetikzlibrary{braids}

(Or add it to the copious list of TikZ libraries that you are already using.)

braid A braid is specified by the pic name braid. The usual syntax for this is as

follows:
\pic[options] at (coordinate) {braid={braid-word}};
braid-word The braid-word is an expression in the braid group, suchass_1 s_2~{-1} s_{3,5}.

The generator labels are not significant.

The subscript and superscript determine how the strands cross. The follow-
ing describes the default behaviour and is written from the viewpoint that the
braid flows down the page. This default behaviour can be altered by using the
crossing convention or flip crossing convention keys (described in a mo-
ment).

1. If the subscript is a single number, as in s_2, the crossing goes from that
number over the next.

2. If the subscript is two or more numbers separated by a comma, as in s_{2,4%}
or s_{1,3,5}, imagine holding the numbered strands and moving each to
the position of the next with the last strand moving under the others to
where the first stands. Any intermediate non-specified strand is behind all
those involved in the crossing.

3. If the subscript is hyphenated, as in s_{1-5}, this is equivalent to
s_{1,2,3,4,5}. This can be used as part of a list, as in s_{1-3,5}.

All of these crossings take place in the same amount of vertical space. Be
advised that crossings involving a lot of strands can get quite squashed.

The exponent can be 1, {-1}, or missing (in which case it defaults to 1, note
also that the exponent is read as a TEX-token so {1} is also legal). If the exponent
is —1 then the braid element represented by the crossing is inverted.

https://github.com/loopspace/braids
https://github.com/nilesjohnson

e s_1is strand 1 over strand 2.
e s_17{-1%} is strand 2 over strand 1.
e s_{1,3} is strand 1 over strand 3, and both are over strand 2.

e s_{1-3} is strand 3 under strand 2 and then under strand 1.

Certain other symbols are allowed in the braid-word which control the ren-
dering of the braid. These extras are as follows.

1. To get crossings to render at the same height, separate them with a hyphen
(note: no check is made to ensure that the crossings can legally be put at
the same height; caveat emptor). For example, s_1-s_3.

2. To draw a floor — which is a rectangle behind the braid occupying some
number of levels (the default being one level) — precede the braid element
by a vertical line, as in s_1 | s_2. The floor is itself a pic which, by de-
fault, consists of a rectangle and two horizontal lines. The rectangle picks
up any f£ill options and the lines any draw options that are set in the
braid/every floor and braid/floor <n> styles, which are documented
below (with an example of changing the pic). The n is the level number,
starting at 1.

More general floors can be drawn using the key braid/add floor. This
takes one argument which is a comma separated list of parameters that
specifies the position and size of the floor:

braid/add floor={x,y,width,height,name}

The units used are the “natural” units of the braid: strand separation and
level height. The name is optional and if given can be used to style the floor
in that the style braid/floor <name> is applied to that floor.

Replacing the floor pic will change how it is drawn. The coordinate system
is set up for the floor pic so that the floor is a unit square with lower left
corner at the origin. The default definition is:

floor/.pic={
\path[pic actions, draw=none] (0,0) rectangle (1,1);
\path[pic actions, fill=nomne] (0,0) -- (1,0) (0,1) -- (1,1);
}

3. The identity element can occur in the braid-word. It is represented by 1.
This inserts the identity which corresponds to no crossing. However, it takes
the same amount of space as if there were a crossing.

The crossing behaviour can be modified by use of one of the following keys.
All are in the /tikz/braid/ namespace.
crossing convention, flip These keys determine the behaviour of the braid symbols. Both crossing convention
crossing convention, set and set symbols take an option, which is one of over, under, down, or up; in this
symbols, flip symbols list over and down are synonyms for each other, as are under and up. The default
for both is over. Then flip crossing convention and flip symbols reverses
the current behaviour of the corresponding setting key.

Defaults S951 \\‘/\ﬁ
-

crossing convention=under sglsfl L LW

<
set symbols=under 5{1551 ,L/l\,J
S

Both S189 J J
B

Table 1: Equivalences of s;_3

These have similar but not identical behaviours. The crossing convention
keys set whether the standard crossings are over or under (the alternatives, down
and up, are based on visualising the braid as travelling down or up the page). The
set symbols keys can be used to invert the braid element represented by each
symbol.

For the generators, such as si, these have the same effect since 51_1 is obtained
from s; by swapping the crossing type. But for the other symbols, such as s;_3,
then these achieve different things. With the crossing convention set to under
then s;_3 still moves strands 1 and 2 to the right. But with set symbols set to
under then these strands now move to the left.

To see the effect of these options, consider s;_3. The equivalences of this, as
a braid element, under the various options is in Table 1. In this table each row
corresponds to a different setting while the central column gives how to achieve
the same result as s;_3 but with the default settings.

Any strands not involved in the crossing, for example strands 2 and 3 in s7 4,
stay behind the crossing regardless of these settings. This is partially because
implementing them as over strands is more complicated to code, and partially
because the idea of s; 4 is that strands 2 and 3 are not involved.

\begin{tikzpicture}[
braid/.cd,
strand 1/.style={red},
strand 2/.style={green},
strand 3/.style={blue},
strand 4/.style={magenta},
]
\pic at (0,0) {braid={s_1 s_{1-4} s_{1,3,4}}};
\pic[braid/crossing convention=under] at (4,0) {braid={s_1 s_{1-4}
s_{1,3,4}}};
\pic[braid/set symbols=under] at (8,0) {braid={s_1 s_{1-4}
s_{1,3,4}}};
\end{tikzpicture}

number of strands

height

crossing height

f)

2.1 Style Options

There are various keys that change the behaviour or rendering of the braid. All
of these are in the /tikz/braid/ namespace. Many of the examples use the key
braid/.cd to switch to this namespace, meaning that multiple braid keys can be
given without the braid prefix. Any unknown keys are dropped back to the tikz
namespace. See the TikZ/pgf documentation for more details on key handling.

The key number of strands sets the minimum number of strands for the
braid. The number of strands will grow according to the terms in the braid word
so this merely sets a lower bound. If not set, the number of strands will be
determined by the terms in the braid word.

The key height is used to set the height of the piece of the braid corresponding
to a single element in the group. This can be negative, and indeed the default
value is negative because the default is for a braid to flow down the page.

This key is depreciated and is only kept for backwards compatibility, the fact
that the default is negative proved confusing. Therefore the following key should
be used in its place.

The key crossing height also sets the height of the piece of the braid corre-
sponding to an element in the group. The sign of this is ignored.

The correct way to get a braid to flow in a different direction to the default is
to use a transformation on the pic, such as in the following example.

\begin{tikzpicture}[
every braid/.style={
ultra thick,
braid/strand 1/.style=red,
braid/strand 2/.style=green,
braid/strand 3/.style=blue,
braid/anchor=center,
}
]
\pic {braid={s_1 s_2"{-1}}};
\pic[rotate=90] at (3,0) {braid={s_1 s_27{-1}}};
\pic[rotate=180] at (6,0) {braid={s_1 s_2"{-1}}};
\piclyscale=-1] at (9,0) {braid={s_1 s_2"{-1}}};
\end{tikzpicture}

width

border height

gap

control factor

nudge factor

) 5 W

The crossing height and height keys shouldn’t be used together. If they are
then a message will be printed on the console and the value for crossing height
will be used.

The key width sets the separation of the strands in the braid. This can be
negative (though the effect of a negative width would be better achieved with a
transformation of ‘xscale=-1°).

The key border height adds a little extra length to the strands at the start
and end of the braid.

The key gap is used to determine how much of a gap to leave in the under
strand at a crossing. This should be a number strictly between 0 and .5. The
curve is drawn using a cubic bézier and the gap is in terms of the time parameter,
so the gap will not increase exactly proportionally to the value given by this key,
though that is a reasonable approximation.

As just said, the parts of the strands involved in a crossing are drawn using a
cubic bézier curve. The control points are vertically above or below their respective
end point. This key determines that vertical separation. It is multiplied by the
height so that it scales properly. It can be set to 0 whereupon the strands in the
crossing are straight lines. The default is 0.5.

The crossings are not quite placed one after another. There is a small “nudge”
between the end of one crossing and the start of another. Due to the way that the
strands are lengthened, if there is no “nudge” then some PDF renderers produce
slightly strange results at certain magnifications. This key controls how much that
“nudge” is, as a factor of the height. For the aforementioned reason, it should
not be set to 0 (the default is 0.05). Note that this does not change the height of
a crossing. Rather, it nudges the height at which the strands start to cross over.

The following example illustrates the above keys.

every braid

every strand, strand <n>

every floor, floor <n>

\begin{tikzpicture}
\picl
draw,
ultra thick,
magenta,
braid/.cd,

border height=3mm,

nudge factor=.2,
gap=.3

] (lengths) {braid={s_1 s_2}};

\draw (lengths-1-s) -- +(-1,0) coordinate (a);

\draw (lengths-1-0) -- +(-1,0) coordinate (b);

\draw (lengths-3-1) -- +(1,0) coordinate (c);

\draw (lengths-1-2) -- +(1,0) coordinate (d);

\draw (lengths-1-s) -- +(0,1) coordinate (e);

\draw (lengths-2-s) -- +(0,1) coordinate (f);

\draw (lengths-2-1) -- +(-1,0) coordinate (g);

\draw ($(lengths-2-1)!.2!(lengths-1-0)$) -- +(-1,0) coordinate (h);
\draw (lengths-1-1) -- +(.5,0) coordinate (i);

\draw ($(lengths-1-1)!.5!(lengths-2-0)$) -- +(.5,0) coordinate (j);

\draw[|<->|] (a) --
\draw[|<->|]1 (c) --
\draw[|<->|] (e) --
\draw[|<->|]1 (g) --
\draw[|<->[] (1) --
\end{tikzpicture}

node[left] {border height} (b);
node [right] {crossing height} (d);
node [above] {width} (£);
node[left] {nudge factor} (h);
node [right] {control factor} (j);

border heightT

nudge factor® (

width

control factor

3

[|

crossing height

This style is invoked on a scope that surrounds the actual braid. It can be
used to set defaults for a group of braids.
The style of the strands are controlled by two types of option. Style options
that are set on the pic are passed to every strand. It is also possible to add style
options to individual strands using the keys every strand and strand <n>. The
strands are numbered by their starting position.
When a floor is requested behind a crossing, it is rendered as a pic. These keys
control how the floor is styled. They can even be used to change the pic used to
draw individual floors. The n is the level number, starting at 1.

\begin{tikzpicture}
\picl
braid/floor 3/.style={
floor/.pic={
\path[pic actions, draw=none] (.5,.5) circle[x radius=.5, y
radius=.5];
\path([pic actions, fill=none, dashed] (0,0) -- (1,0);
\path([pic actions, fill=none, dotted] (0,1) -- (1,1);
1,
},
braid/every floor/.style={
fill=yellow,
draw=black
}
1 {braid={| s_1 s_2 | s_17{-1}}};
\end{tikzpicture}

N

2.2 Coordinates and Anchors

The braid is littered with coordinates. Each strand gets a coordinate at each end,
and at every level between crossings. These are labelled and numbered by the
initial strand position and the crossing level. They are also labelled and numbered
by the final strand position with the prefix rev. If the braid has been named, the
coordinate names look like the following:

<braid name>-<strand number>-<crossing number>
<braid name>-rev-<strand number>-<crossing number>

The crossing number can also be either s or e for the start and end of the strand.
Note that -1-0 and -1-s are slightly different in that s includes the border height.

\begin{tikzpicture}

\pic[draw,braid/strand 1/.style={red}] (coords) {braid={s_11}};
\node [at=(coords-1-s) ,pin=west:strand 1 start] {};

\node [at=(coords-1-e) ,pin=east:strand 1 end] {};
\end{tikzpicture}

strand 1 start — j

— strand 1 end

See Section 2.3 for more examples using these anchors.

In addition, if the braid is named then a rectangular node is defined that fits
around the whole braid. This node is not defined in the standard way, so — for
example — it can’t directly be used to draw a border, but TikZ behaves afterwards
as if it were. In particular its anchors can be used to define locations around the
edge of the braid.

\begin{tikzpicturel}[ultra thick]
\pic (anchors) at (1,2) {braid={s_1 s_2}};
\draw[<-,cyan] (anchors.east) -- +(1,0) node[right] {east};
\draw[<-,cyan] (anchors.west) -- +(-1,0) node[left] {west};
\draw[<-,cyan] (anchors.north) -- +(0,1) node[above] {north};
\draw[<-,cyan] (anchors.south) -- +(0,-1) node[below] {south};
\end{tikzpicture}

north

west east
south
anchor The key anchor (in the braid name space) can be used to shift the braid so that

a different part of it is at the specified location. If the argument contains a hyphen
then it is assumed to refer to a point on a strand with the same interpretation as
the coordinates. If the argument does not contain a hyphen then it is taken to be
an anchor of a surrounding rectangular node (the node might not itself exist — if
the braid isn’t named — but that doesn’t affect the positioning). In the following
example, the braid is shifted so that where the third strand starts the second level
is at the position (1,1).

\begin{center}
\begin{tikzpicture}
\fill[purple] (1,1) circle[radius=3mm];
\picl
rotate=90,
braid/anchor=3-2,
braid/strand 3/.style={red},
] at (1,1) {braid={s_2 s_1 s_2 s_1}};
\end{tikzpicture}
\end{center}

N

S

2.3 Examples

Here are more detailed examples.

\begin{center}
\begin{tikzpicture}
\picl
braid/every floor/.style={fill=yellow},
braid/floor 1/.style={draw=black,dashed,fill=yellow!50!green},
line width=2pt,
braid/strand 1/.style={red},
braid/strand 2/.style={blue},
braid/strand 3/.style={green},
braid/add floor={2,4,3,2,a},
braid/floor a/.style={fill=pink},
name=coordinates,
] at (2,0) {braid={| s_1-s_3-s_ 5 | s_2°{-1}-s_4| s_1-s_4 s_2°{-1}
s_1-s_3 s_27{-1}-s_4"{-1}}};
\fill[yellow] (2,0) circle (4pt);
\node [at=(coordinates-3-s) ,pin=north west:strand 3 start] {};
\node [at=(coordinates-3-e) ,pin=south west:strand 3 end] {};
\node [at=(coordinates-rev-3-s) ,pin=north east:strand 3 (from
bottom) start] {};
\node [at=(coordinates-rev-3-e) ,pin=south east:strand 3 (from
bottom) end] {};
\end{tikzpicture}
\end{center}

10

strand 3 start

h

strand 3 end

R

strand 3 (from bottom) end

strand 3 (from bottom) start

\begin{center}
\begin{tikzpicture}
\picl

]

\node [circle,draw,fill=white, inner sep=Opt] at

braid/.cd,

number of strands=3,
line width=8pt,

strand 1/.style={red},
strand 2/.style={green},
strand 3/.style={blue},
gap=0.1,

control factor=0,

nudge factor=0,
name=symbols,
{braid={a_2 a_1 a_2"{-1} a_1}};

AANCAVEH

(symbols-2-1)

\node [circle,draw,fill=white,inner sep=Opt] at (symbols-3-1)

NGV

\node [circle,draw,fill=white,inner sep=Opt] at (symbols-2-3)

AANCAVEF

\end{tikzpicture}
\end{center}

11

\begin{center}
\begin{tikzpicture}
\picl
braid/.cd,
number of strands=3,
ultra thick,
strand 1/.style={red},
strand 2/.style={green},
strand 3/.style={blue},
gap=0.1,
] {braid={a_{1-3} a_{1,3}}};
\end{tikzpicture}
\end{center}

S

|

The next example uses the nonlinear transformations pgf module with the
following definition.

\usepgfmodule{nonlineartransformations}

\makeatletter

\def\polartransformation{/
% \pgfOx will contain the radius
% \pgf@y will contain the distance
\pgfmathsincos@{\pgf@sys@tonumber\pgf@x}/
% pgfmathresultz is now the cosine of radius and
/% pgfmathresulty is the sine of radius
\pgf@x=\pgfmathresultx\pgfQy/
\pgf@y=\pgfmathresulty\pgfQy/

}

\makeatother

12

\begin{tikzpicture}[scale=.5]

\begin{scope}
\pgftransformnonlinear{\polartransformation}/ see above
\pic[

rotate=90,

braid/.cd,

every strand/.style={line width=6pt,magenta!67},
border height=0cm,
crossing height=15.7pt,
gap=.2,
nudge factor=0.01,
] at (0,5) {braid=/
s 2°{-1} s_. 3 s_1 s 3 s 2 {-1} s 3s_15s_3
s_27°{-1} s_.3 s_1 s_27°{-1} s_3 s_1 s_2"{-1}
s 1 s 3s_1s 2{-1} s_.1 s 3 s_1s_2°{-1}
};
\end{scope}

\end{tikzpicture}

13

Here’s an example using a decoration library to style the strands.

\begin{tikzpicturel} [remember picture, overlay]
\picl
decoration={
markings,
mark=between positions 2mm and 1 step 5mm with {
\draw[black,thick] (-2mm,-1.5mm) .. controls +(4mm,0) and
+(-4mm,0) .. (2mm,1.5mm);
}
},
braid/number of strands=10,
braid/gap=.15,
braid/every strand/.style={
line width=3mm,
draw,
brown!50,
postaction={
decorate,
},
preaction={
draw,
black,
line width=3.3mm,
}
},
braid/every floor/.style={
draw
},
braid/height=-3cm,
braid/width=2cm,
braid/anchor=1-0,
]
at ([shift={(2,-2)}]current page.north west)
{braid={
s_1-s_3-s_57{-1}-s_77{-1}
s_1-s_3-s_57{-1}-s_7"{-1}
s_1-s_3-s_57"{-1}-s_7"{-1}
s_1-s_3-s_57{-1}-s_77{-1}
s_1-s_3-s_57{-1}-s_77{-1}
s_1-s_3-s_5"{-1}-s_7"{-1}
s_1-s_3-s_57{-1}-s_7"{-1}
s_1-s_3-s_57{-1}-s_7"{-1}
1}
\begin{scope} [shift={([shift={(1,-2)}]current page.north west)}]
\draw (0,0) grid[xstep=4cm,ystep=3cm] ++(20,-24.1);
\draw (18,0) -- +(0,-24.1);
\end{scope}
\end{tikzpicture}

14

HH

HH

\braid

braid-word

3 Original Package Usage (Depreciated)

The original version was as a separate package. This is still included for backwards
compatibility. To use this package, you need to put the following in the preamble.

\usepackage{braids}

This will generate a warning saying that it is preferable to use the TikZ library
version. To suppress this warning use the nowarning option:

\usepackage [nowarning] {braids}

A braid is specified by the command \braid. The syntax for this command is
as follows:

\braid[style options] (name) at (coordinate) braid-word;

The braid-word is an expression in the braid group, such as s_1 s_27{-1}.
The generator labels are not significant. The exponent can be 1, {-1}, or missing
(in which case it defaults to 1, note also that the exponent is read as a TEX-token
so {1} is also legal). Certain other symbols are allowed in the braid-word which
control the rendering of the braid. These extras are as follows.

1. To get crossings to render at the same height, separate them with a hyphen
(note: no check is made to ensure that the crossings can legally be put at
the same height; caveat emptor).

2. To draw a floor, precede the braid element by a vertical line. What happens
then is that when the braid is rendered, the coordinates of the rectangle
behind that crossing (wide enough to encompass all the strands) is passed
to a command. The intention is that this command draw something behind
the braid. The command is configurable by a key (see 3.1).

3. The identity element can occur in the braid-word. It is represented by 1.
This inserts the identity which corresponds to no crossing. However, it takes
the same amount of space as if there were a crossing.

4. Strands can be labelled between crossings. To do this, the commands
\label, \olabel, and \clabel are provided. These take three arguments,
the first is optional. The result of this command is to place a node on top
of a particular strand between the crossings where the command is given.
The first (optional) argument can be used to pass style options to this node.
The second argument is the strand number. The third argument is the label
text.

The three commands differ as to how they interpret the strand number. For
\olabel, the strand number is taken to mean the strand that starts at that
position. For \clabel, the strand number is taken to mean the strand that
is currently at that position. The behaviour of \label is to choose one or
other of these depending on whether the key strand label by origin is
true or false. This key only has an effect at the start of the braid-word; it
cannot be reset in the middle.

5. Style options can be given in the middle of a braid-word by enclosing them
in square brackets. There are not many style options that it makes sense to
change in the middle of the braid-word, since the strands are rendered all in
one go at the end.

16

name

at

style options

number of strands

height

width
border height

gap

control factor

nudge factor

6. Scoping is handled by using braces. Thus to change a style only briefly,
enclose the desired scope in braces.

The (optional) name acts a little like the name of a TikZ node. When it is
specified, the routine that renders the braid also saves certain coordinates as if
they were node anchors. Specifically, coordinate nodes are placed at the centre of
the braid diagram and at the ends of each strand. The centre has the label name,
the strands are labelled name-number-end and name-rev-number-end, where name
is the name given to the braid, number is the number of the strand counting from
the left, and end is either s for the start or e for the end. If the version with rev is
used then the numbers correspond to the final positions of the braids. The name
can also be specified with the name key.

The (optional) at (coordinate) syntax positions the braid at the coordinate
in the current picture. Due to the implementation, the coordinate has to be
known at the start, but the width and height of the braid are only known at the
end. Therefore, the braid is positioned so that the start of the first strand is at
(coordinate). This can also be specified using the at key.

The style options set the style for the braid strands. They can be grouped
into three types: options that set up the main parameters for the braid, options
that set the default style for the strands, and options that set up styles for indi-
vidual strands. The options are as follows.

3.1 Style Options

The key number of strands sets the minimum number of strands for the braid.
The number of strands will grow according to the terms in the braid word so this
merely sets a lower bound. If not set, the number of strands will be determined
by the terms in the braid word.

The key height sets the height of the piece of the braid corresponding to an
element in the group.

The key width sets the separation of the strands in the braid.

The key border height adds a little extra length to the strands at the start
and end of the braid.

The key gap is used to determine how much of a gap to leave in the under
strand at a crossing. This should be a number strictly between 0 and .5. The
curve is drawn using a cubic bézier and the gap is in terms of the time parameter,
so the gap will not increase exactly proportionally to the value given by this key,
though that is a reasonable approximation.

As just said, the parts of the strands involved in a crossing are drawn using a
cubic bézier curve. The control points are vertically above or below their respective
end point. This key determines that vertical separation. It is multiplied by the
height so that it scales properly. It can be set to 0 whereupon the strands in the
crossing are straight lines. The default is 0.5.

The crossings are not quite placed one after another. There is a small “nudge”
between the end of one crossing and the start of another. Due to the way that the
strands are lengthened, if there is no “nudge” then some PDF renderers produce
slightly strange results at certain magnifications. This key controls how much that
“nudge” is, as a factor of the height. For the aforementioned reason, it should
not be set to 0 (the default is 0.05). Note that this does not change the height of
a crossing. Rather, it nudges the height at which the strands start to cross over.

17

style strands

floor command

style floors
style all floors

The style of the strands are controlled by two types of option. Style options
that are set on the \braid command are passed to every strand. It is also possible
to add style options to individual strands using the key style strands. This
takes two options, a comma-delimited list of strand numbers (which could be just
a single number) and a list of options to be applied to that strand. Thus, the
syntax is style strands={n,m,...}{options}. The strands are numbered by
their starting position. Not all of the standard TikZ style options are possible
due to the way that the strands are constructed. Basically, the options that are
allowed are those that do not require changing the path or drawing it more than
once.

When a floor is requested behind a crossing, the actual way to render it is
determined by a command. This key allows the user to define that command.
The argument to this key should be the code that should be executed for each
floor. To avoid the hassle of getting the number of hashes right, the command
should take no arguments. Rather, the coordinates of the rectangle are saved in to
macros \floorsx, \floorsy, \floorex, \floorey (these macros will expand to
something like 10pt) and the command should use these to position the drawing.
The default is to draw a line at the top and at the bottom of the rectangle.

In the spirit of separating style and content, the style options for the floors can
be specified separately to the command (of course, they could be built in to the
command). One advantage of this over building them in to the command is to
allow them to be overridden for individual floors. The style all floors sets up
options to be used for all floors, whilst the style floors={n,m,...}{options}
sets up options to be used only for the listed floor. Anything specified in the
floor command will take precedence over both of these.

Any other style options are passed to the underlying TikZ/PGF system and
so may influence how the braid is drawn (but note that not all keys make sense
due to the implementation).

3.2 Examples

Here are more detailed examples.

18

\begin{center}
\begin{tikzpicture}
\braid[
style all floors={fill=yellow},
style floors={1}{dashed,fill=yellow!50!green},
floor command={/
\fill (\floorsx,\floorsy) rectangle (\floorex,\floorey);
\draw (\floorsx,\floorsy) -- (\floorex,\floorsy);
1,
line width=2pt,
style strands={1}{red},
style strands={2}{blue},
style strands={3}{green}
] (strands) at (2,0) | s_1-s_3-s_ 5 | s_2°{-1}-s_4| s_1-s_4
s 27{-1} s_1-s_3 s_27{-1}-s_4"{-1};
\fill[yellow] (2,0) circle (4pt);
\fill[purple] (strands) circle (4pt);
\node [at=(strands-3-s) ,pin=north west:strand 3] {};
\node [at=(strands-3-e) ,pin=south west:strand 3] {};
\node [at=(strands-rev-3-s) ,pin=north east:strand 3 (from bottom)]
o
\node [at=(strands-rev-3-e) ,pin=south east:strand 3 (from bottom)]
{};
\end{tikzpicture}
\end{center}

strand 3 strand 3 (from bottom)

AR

strand 3 strand 3 (from bottom)

19

\begin{center}
\begin{tikzpicture}
\braid[
number of strands=3,
line width=8pt,
style strands={1}{red},
style strands={2}{green},
style strands={3}{blue},
gap=0.1,
control factor=0,
nudge factor=0,
strand label by origin=true,
strand label/.style={circle,draw,fill=white,inner sep=Opt},
yscale=1] (braid_1) a_2 \label{2}{\(+\)} \clabel{2}{\(-\)} a_1
a_2"{-1} \olabel{2}{\(+\)} a_1;
\end{tikzpicture}
\end{center}

’
R

20

	1 Introduction
	2 TikZ Library Usage
	2.1 Style Options
	2.2 Coordinates and Anchors
	2.3 Examples

	3 Original Package Usage (Depreciated)
	3.1 Style Options
	3.2 Examples

