mathspic in Perl

Apostolos Syropoulos

366, 28th October Str. R.W.D. Nickalls Consultant in Anaesthesia & Intensive Care
GR-671 00 Xanthi (retired) c/o Department of Anaesthesia Nottingham University
Greece Hospitals City Hospital Campus Hucknall Road Nottingham NG5
email: 1PB, UK email:dick@nickalls.org

asyropoulos@yahoo. com
version 1.13 Apr 26, 2010

Introduction

mathspic is a graphics program which implements a simple programming notation, mathspic, suitable
for the creation of diagrams or mathematical figures. mathspic's input is a LaTeX file containing
mathspic plotting commands. mathspic's output is the equivalent LaTeX file containing PiCTeX
plotting commands. Technically, therefore, mathspic is a preprocessor or “filter' for use with the
PiCTeX drawing engine. mathspic was originally written in PowerBASIC 3.5, a DOS-based
programming language. Since, many potential users are working in rather different programming
environments, the authors thought of porting mathspic into another programming cross-platform
language which would be widely available. The authors decided to rewrite mathspic in Perl since not
only is Perl pretty stable, but it has extensive mathematical support.

Program Structure

Initially, we define a little package that is used to implement the LoOp command. Then, we must do is to
check the possible command line arguments. Next, we process the input file. If the user has used the - b
(see below), the program will “beep' if any errors are found during processing. We need some auxiliary
subroutines in order to properly parse the input file and of course to handle the various commands. We
also need a few global variables.

<*>=

#!/usr/bin/perl

#

#(c) Copyright 2005-2010

Apostolos Syropoulos & R.W.D. Nickalls
asyropoulos@yahoo.com dick@nickalls.org
#

This program can be redistributed and/or modified under the terms
of the LaTeX Project Public License Distributed from CTAN
archives in directory macros/latex/base/lppl.txt; either
version 1 of the License, or any later version.

#

<package DummyFH >

package main;

use Math::Trig;

<Define global variables>

<subroutine definitions>

<Check for command line arguments>

<process file>

print $alarm if $no errors > 0;

__END_

The package DummyFH is used in the implementation of the LOOp command. It creates a dummy
filehandle that is associated with an array of strings. Since we only read data from this dummy filehandle,

we implement the READLINE subroutine. When we read a line from this dummy filehandle, we actually
requesting the next entry of the array (if any). That is why we use the package variable $index. When
there are no more entries in the array, subroutine READLINE returns the value undef so to falsify loop
that controls the consumption of input from this dummy filehandle.

<package DummyFH >= (<-U)
package DummyFH;
my $index = 0;
sub TIEHANDLE {
my $class = shift;
my $self= shift;
bless $self, $class;

sub READLINE {
my $self = shift;
#shift @$self;
if ($index > $#$self) {
$index = 0;
return undef;

}
else {
return $self->[$index++];

}

mathspic accepts at most four command-line switches, namely - b for enabling the beep, - S for
automatic screen viewing of the output-file, - C for cleaning out all comment-lines, and -0 with a
following file-name for specifying the output file-name. mathspic requires the name of an existing
input-file (the so-called mathspic-file) containing mathspiccommands. If no command-line
arguments are supplied, we print a suitable usage message indicating the syntax. For each command-line
argument we set a global variable. The default behavior is that the "bell' does not beep and comment-lines
are not removed from the output-file.

<Check for command line arguments>= (<-U)
our $alarm="";
our $comments on=1;
our $out file="default";
our $argc=@ARGVY;
if ($argc == 0 || $argc > 5){ # no command line arguments or more than 4
arguments
die "\nmathspic version $version_number\n"

"Usage: mathspic [-h] [-b] [-c] [-0 <out file>] <in file>\n\n";
}

else {
<Process command line arguments>
print "This is mathspic version $version number\n";

}

<Check if .m file exists>

In order to get the various command-line arguments we use a simple while loop that checks each
element of the array @GARGV. We check for all the switches, and we get the name of the input-file.

<Process command line arguments>= (<-U)
our $file = "";
SWITCHES:
while($ = $ARGV[O]) {
shift;
if (/~-h$/) {
die "\nThis is mathspic version $version number\n"
"Type \"man mathspic\" for detailed help\n".

"Usage:\tmathspic [-h] [-b] [-c] [-0 <out file>] <in file>\n"

"\twhere,\n"
"\t[-b]\tenables bell sound if error exists\n"
"\t[-c]\tdisables comments in ouput file\n"
"\t[-h]\tgives this help listing\n"
"\t[-o]\tcreates specified output file\n\n";

}

elsif (/~-bs$/) {

$alarm = chr(7);

}
elsif (/~-c$/)
$comments on = 0;
}
elsif (/™-0%/) {
die "No output file specified!\n" if !@ARGV;
$out file = $ARGVI[O];
shift;
}
elsif (/7~-\w+/) {
die "$: Illegal command line switch!\n";
}
else {
$file = $;
}
my ($xA, $yA, $xB, $yB, $dist)=@_;
die "No input file specified!\n" if $file eq "";

-~

In order to check whether the input-file exists, we simply use the - e operator. First we check to see if
$file exits. If the input-file does exist then the variable $T1ile contains the file name. In case the user
has not specified an output file, the default output file name is the name of the input file with extension
.mt. Finally, the program outputs all error messages to the screen and to a log file. The name of the log
file consists of the contents of the variable $file and the extension .mlg.

<Check if .m file exists>= (<-U)
our ($source file, $log file);
if (! -e $file) {
die "$file: no such file!\n" if (! (-e "$file.m"));

$source file = "$file.m";
}
else {

$source file = $file;

$file = $1 if $file =~ /(\w[\w-\.]+)\.\w+/;
}

$out file= "$file.mt" if $out file eq "default";
$log file= "$file.mlg";

Now that we have all the command line arguments, we can start processing the input file. This is done by
calling the subroutine process input. Before that we must open all necessary files. Next, we print
some "header' information to the output file and to the log file.

<process file>= (<-U)
open(IN,"$source file")
|
|

| |[die "Can't open source file: $source file\n";
|die "Can't open output file: $out file\n";
|die "Can't open log file: $log file\n";

open(0UT, ">$out file")
open(LOG, ">$log file")
print headers;

process input(IN,"");

In this section we define a few global variables. More specifically: the variable $version number
contains the current version number of the program, the variable $commandLineArgs contains the
command line arguments. These two variables are used in the print headers subroutine. The
variable $command will contain the whole current input line. Hash $PointTable is used to store

point names and related information. Hash %sVarTable is used to store mathspic variable names and
related information, while the associative array sConstTable contains the names of constants. Note
that the values of both constants and variables are kept in %sVarTable. The variable $n0_errors is
incremented whenever the program encounters an error in the input file. The variables $xunits,
$yunits and $units are related to the paper command. In particular, the variable $units is used
to parse the unit part of the unit part of the paper command. The variable $defaultsymbol is used
to set the point shape. The constant PI holds the value of the mathematical constant pi. The constant R2D
holds the transformation factor to transform radians to degrees. The constant D2R holds the
transformation factor to transform degrees to radians, i.e., the value 1/R2D. The global variables
$arrowLength, $arrowAngleB and $arrowAngleC are actually parameters that are used by the
subroutines that draw arrows. Since $arrowlLength is actually a length, variable
$arrowLenghtUnits holds the units of measure in which this length is expressed. The hash table
%Dim0fPoint contains the side or the radius of a point whose plot-symbol is a square or a circle,
respectively. In case the default point symbol is a circle or a square, variable $GlobalDimOfPoints
is used to store the length of the radius or the length of the side of default point symbol, respectively.
Variable $LineThickness holds the current line thickness (the default value is 0.4 pt).

<Define global variables>= (<-U)

our $version number = "1.13 Apr 26, 2010";
our $commandLineArgs = join(" ", @ARGV);
our $command = "";

our $curr_in file .

our %PointTable = ();

our %VarTable = ()
our %ConstTable = ();
our $no _errors = 0;

(
(

our $xunits = "1lpt";
our $yunits = "1pt";
our $units = "pt|pc|in|bp|cm|mm|dd|cc|sp";

our $defaultsymbol = "\$\\bullet\$";
our $defaultLFradius = 0;

use constant PI => atan2(1,1)*4;
use constant R2D => 180 / PI;
use constant D2R => PI / 180;
our $arrowLength = 2;

our $arrowLengthUnits = "mm";
our $arrowAngleB = 30;

our $arrowAngleC = 40;

our %Dim0OfPoint = ();

our $GlobalDimOfPoints = 0;

our @acros = ();

our $LineThickness = 0.4;

In this section we define the various subroutines that are needed in order to process the input file.

Subroutine mpp is a mathspic preprocessor that allows the definition and use of macros with or without
arguments. For the moment it is an experimental feature and it should be used with care.

Subroutine PrintErrorMessage is used to print error messages to the screen, to the output file and to
the log file.

Subroutine PrintWarningMessage is used to print warning messages to the screen, to the output file
and to the log file.

Subroutine PrintFatalError is used to print an error message to the screen and to abort execution,
where the error is considered fatal and not recoverable.

Subroutine chk Lparen checks whether the next input character is a left parenthesis. Subroutine
chk rparen checks whether the next input character is a right parenthesis. Subroutine chk comment

checks whether a given command is followed by a trailing comment. In the same spirit, we define the
subroutines chk lcb, chk rcb, chk 1sb, and chk rsb which check for opening and closing curly
and square brackets respectively. The subroutine chk comma checks whether the next token is a
comma.

Subroutine print headers is used to print a header to the output file, so a user knows that the file has
been generated by mathspic.

Subroutine get point is used to parse a point name and to check whether the point exists (i.e whether
the point has been defined).

Subroutine perpendicular is used to compute the coordinates of the foot of perpendicular line from
some point P to a line AB.

Subroutine Length is used to compute the distance between two points A and B.
Subroutine triangleArea computes the area of a triangle defined by three points.

Subroutine PointOnLine is used to compute the coordinates of a point on a line segment AB and a
distance d units from A towards B.

Subroutine circumCircleCenter takes six arguments that are the coordinates of three points and
computes the center of the circle that passes through the three points which define the triangle.

Subroutine ComputeDist is used to compute a numeric value that is specified by either a variable
name, a pair of points, or just a number.

Subroutine intersection4points is used to compute the coordinates of the point of intersection of
two lines specified by the four arguments (i.e. two arguments for each point).

Subroutine IncircleCenter is used to compute the center and the radius of a circle that touches
internally the sides of a triangle, the coordinates of the three points which define the triangle being the

arguments of the subroutine.

Subroutine Angle determines the opening in degrees of an angle defined by three points which are the
arguments of this subroutine.

Subroutine excircle computes the center and the radius of a circle that externally touches a given side
(4th and 5th arguments) of triangle (determined by the 1st, the 2nd and the 3rd argument).

Subroutine DrawLineOrArrow is used to parse the arguments of the commands drawline,
drawthickline, drawarrow, drawthickarrow and drawCurve.

Subroutine drawarrows is used to draw one or more arrows between points.
Subroutine drawlines is used to draw one or more lines between points.
Subroutine drawCurve is used to draw a curve between an odd number of points.
Subroutine drawpoints is used to draw the point symbol of one or more points.
Subroutine drawAngleArc is used to draw an arc line within an angle.

Subroutine drawAngleArrow is used to draw an arc line with an arrow on the end, within an angle.

Subroutine expr and subroutines term, factor and primitive are used to parse an expression that
follows a variable declaration.

Subroutine membe r0f is used to determine whether a string is a member of a list of strings.
Subroutine midpoint computes the midpoint of two points.

Subroutine tand computes the tangent of an angle, where the angle is expressed in degrees.
Subroutine get string scans a string in order to extract a valid mathspic string.

Subroutine 1S tainted checks whether a string contains data that may be proved harmful if used as
arguments to a shell escape.

Subroutine N00TfDigits has one argument which is a number and returns the number of decimal digits
it has.

Subroutine drawsquare has one argument which is the radius of point and yields LaTeX code that
draws a square.

Subroutine X2Sp can be used to transform a length to sp units.
Subroutine SP2X can be used to transform a length expressed in sp units to any other acceptable unit.

Subroutine setLineThickness is used to determine the length of the linethickness in the current
paper units.

Subroutine process input parses the input file and any other file being included in the main file, and
generates output.

<subroutine definitions>= (<-U)
<subroutine mpp >
<subroutine PrintErrorMessage >
<subroutine PrintWarningMessage >
<subroutine PrintFatalError >
<subroutine chk lparen >
<subroutine chk rparen >
<subroutine chk lcb >
<subroutine chk rcb >
<subroutine chk lsb >
<subroutine chk rsb >
<subroutine chk comma >
<subroutine chk comment >
<subroutine print headers >
<subroutine get point >
<subroutine perpendicular >
<subroutine Length >
<subroutine triangleArea >
<subroutine pointOnLine_ >
<subroutine circumCircleCenter >
<subroutine ComputeDist >
<subroutine intersection4points >
<subroutine IncircleCenter >
<subroutine Angle >

<subroutine

excircle >

<subroutine

DrawlLineOrArrow >

<subroutine

drawarrows >

<subroutine

drawlines >

<subroutine

drawCurve >

<subroutine

drawpoints >

<Ssubroutine

drawAngleArc >

<subroutine

drawAngleArrow >

<subroutine

expr >

<subroutine

member0f >

<subroutine

midpoint >

<subroutine

tand >

<subroutine

get string

<Ssubroutine

is tainted

<subroutine

no0OfDigits

<subroutine

VIV IV IV

drawsquare

<subroutine

X2sp >

<subroutine

sp2X >

<subroutine

setlineThickness >

<subroutine

process input >

Subroutine mpp is an implementation of a mathspic preprocessor that allows the definition of one-line
macros with or without arguments. Macro definition has the following syntax:

"%sdef" macro_name "(" [parameters] ")" macro_code
where parameters is a list of comma separated strings (e.g., X,y,z).
Once a macro 1is defined it can be used or it can be undefined. To
undefine a macro one has to use the following command:

"ssundef" [macro name]

If the current input line starts with %def, then we assume that we
have a macro definition. We parse each component of the macro
definition and finally we store the macro name, the macro code and the
macro parameters (if any) in an anonymous hash that eventually becomes
part of an array. If we encounter any error, we simply skip to the
next line after printing a suitable error message. Now, if the first
tokens of an input line are %undef, we assume the user wants to delete
a macro. In case these tokens are not followed by a macro name or the
macro name has not been defined we simply go on. Otherwise, we delete
the corresponding macro data from the global array @Macros that
contains all the macro information. Macro expansion is more difficult
and it will be described in detail in a separate document. At this
point we would like to thank Joachim Schneider for a suggestion on
improving macro expansion.

<subroutine mpp >= (<-U)
sub mpp {
my $in line;

chomp($in line = shift);
my $LC = shift;
my $out line = $in line;

my $macro name = "";

my @macro param = ();

my $macro code = "";

if ($in line =~ s/"%def\s*//) {
if ($in line =~ s/~(\w+)\s*//){

$macro_name = $1;

}

else {
PrintErrorMessage("No macro name has been found",$LC);
return ""

}

if ($in line =~ s/~\(\s*//) {
do nothing
}
else {
PrintErrorMessage("No left parenthesis after macro name has been found",$LC);

return H

}
if ($in line =~ s/™\)//) {

Macro has no parameters!
}
else {
MACROS: while (1) {
if ($in line =~ s/~(\w+)\s*//) {
push (@macro param, $1);
}
else {
PrintErrorMessage("No macro parameter name has been found",$LC);
return "";

}
if ($in_line =~ s/~,\s*//) {
next MACROS;
}
else {
last MACROS;
}
}
if ($in line =~ s/™\)//) {
do nothing!
}

else {
PrintErrorMessage("No closing parenthesis after macro parameters",$LC);
return "";
}
}
$in_line =~ s/(["%]+) (%.*)/$1/;
$macro code = $in line;
push (@acros , { 'macro name' => $macro name,
'macro_code' => $macro code,
'macro_param' => \@macro param });
return $out line;

}
elsif ($in line =~ s/"Ssundef\s*//) {
if ($in line =~ s/~(\w+)//) {
my $undef macro = $1;
for(my $i = $#Macros; $i >= 0; $i--) {
if ($Macros[$i]->{'macro name'} eq $undef macro) {
splice(@Macros,$i,1);

}
}

return $out line;

}
elsif ($in_line =~ s/™\s*%//) {
return $out line;
}
else {
my $comment = $2 if $in line =~ s/(["%]+) (%.+)/$1/;
EXPANSIONLOOP: while () {
my $org_in line = $in line;
for(my $i = $#Macros; $i >= 0; $i--) {
my $macro name = $Macros[$i]->{'macro name'};
if ($in_line =~ /&$macro_name\b/) { HAHHHAHHHAHHHH R R R R R R R R R R R
my $num_of macro args = @{$Macros[$i]->{'macro param'}};
if ($num_of macro args > 0) {
Macro with parameters

my $pattern = "&$macro name\\ (";

foreach my $p (1..$num of macro args) {
my $comma = ($p == $num of macro args) ? "\\s*" : "\\s*,\\s*";
$pattern .= "\\s*[™\\s\\)]+$comma";

}

$pattern .= "\\)";

while($in_line =~ /&$macro_name\b/) {
if ($in_line =~ /$pattern/) {
my $before = $°;
my $after = $';

my $match = $&;
my $new code = $Macros[$i]->{'macro code'};
$match =~ s/~&$macro name\ (\s*//;
$match =~ s/\)$//;
foreach my $arg (0..($num_of macro args - 1)) {
my $old = $Macros[$i]->{'macro param'}->[$arg];
my $comma = ($arg == ($num of macro args - 1)) ? "" : ",";

$match =~ s/"™\s*([™\s,]+)\s*$comma//;
my $new = $1;

'g': Parameter may occur several times
in $new code.
'\b': Substitute only whole words
not x in xA
$new_code =~ s/\b$old\b/$new/qg;
}
$in line = "$before$new code$after";
}
else {
PrintErrorMessage("Usage of macro &$macro name does not "
"match its definition", $LC);
return "";
}
}
}
else {
Macro without parameters
my $replacement = $Macros[$i]->{'macro code'};
'\b': Substitute only whole words
not x in xA
$in line =~ s/&$macro name\b/$replacement/g;
}
}

}
last EXPANSIONLOOP if ($org in line eq $in line);

}

return "$in line$comment";

}
}

Subroutine PrintErrorMessage has two parameters: the error message
that will be printed on the screen, the log file and the output file,
and the line number of the line containing the error was detected. The
general form of the error message is the following:

line X: paper{units(
,mm)xrange(0,20)yrange(0,30)axes(B)ticks(10,10)}

***Error: Error_ Message

where X denotes the line number and Error Message is the actual error
message. Note, that we print the tokens processed so far and on the
text line the unprocessed tokens, so that the user knows exactly where
the error is. In the variable $A we store the processed tokens, while
the variable $1 holds the length of $A plus the length of the

$error line (that is the number of the input line where the error
occurred) plus 7, i.e., 4 (the length of the word line) plus 2 (the
two blank spaces) plus 1 (the symbol :). Finally, we increment the
error counter (variable $no errors). Note, that in case the user has
specified the -c command line switch, we will not print any messages
to the output file.

<subroutine PrintErrorMessage >= (<-U)

sub PrintErrorMessage {
my $errormessage = shift;
my $error _line = shift;
my ($1,%A);
$1 = l+length($command)-length;
$A = substr($command,0,$1);
$1 += 7 +length($error line);

for my $fh (STDOUT, LOG) {

print $fh "$curr_in file", "Line $error line: $A\n";
print $fh " " x $1 ,$,"***Error: $errormessage\n";
}
if ($comments on) { #print to output file file
print OUT "%% *** $curr _in file", "Line $error line: $A\n";
print OUT "% *** "," " x $1L ,$,"%% ... Error: $errormessage\n";
}
$no_errors++;
}

Subroutine PrintWarningMessage behaves exactly like the subroutine
PrintErrorMessage. The only difference is that the second subroutine
prints only a warning message. A warning is issued when the system
detects parameters that do nothing.

<subroutine PrintWarningMessage >= (<-U)
sub PrintWarningMessage {

my $warningMessage shift;

my $warning line shift;

my ($1,%A);

$1 = l+length($command)-length;

$A = substr($command,0,$1);

$1 += 7 +length($warning line);

for my $fh (STDOUT, LOG) {
print $fh "$curr_in file", "Line $warning line: $A\n";
print $fh " " x $U ,$,"***Warning: $warningMessage\n";

if ($comments on) { #print to output file file
print OUT "%% *** $curr _in file", "Line $warning line: $A\n";
print OUT "%% *** "," " x $1 ,$,"%% ... Warning: $warningMessage\n";
}
}

The subroutine PrintFatalError behaves similarly to the subroutine
PrintErrorMessage. It prints an error message to the screen and aborts
execution.

<subroutine PrintFatalError >= (<-U)
sub PrintFatalError {
my $FatalMessage
my $fatal line
my ($1,$A);

shift;
shift;

$1 = l+length($command)-length;
$A = substr($command,0,$1);
$1 += 7 +length($fatal line);
die "$curr in file", "Line $fatal line: $A\n"
(" " x $1) . $. "***Fatal Error: $FatalMessage\n";

The subroutine chk lparen accepts two arguments: the name of the token

that should be immediately before the left parenthesis (variable
$token), and the current line number (variable $lc). First we skip any
leading white space and then check whether the next input character is
a left parenthesis, then the subroutine skips any trailing white
space; otherwise it prints an error message.

<subroutine chk lparen >= (<-U)
sub chk 1lparen {

my $token = $ [0];
my $lc =$_[1];
s/\s*//;

if (/70°\(1/) {
PrintErrorMessage("Missing (after $token",$lc);

}

else {
s/™\(\s*//;
}
}

The subroutine chk rparen accepts two parameters: the name of the
token that should be immediately after a right parenthesis (variable
$token), and the current line number (variable $lc). Initially, we
skip any leading white space and then we check whether the next input
token is a right parenthesis. If it is not we issue a error message
and return, otherwise we skip the parenthesis and any trailing white
space.

<subroutine chk rparen >= (<-U)
sub chk rparen {
my $token = $ [0];
my $lc =$ [1];
s/\s*//;
if (s/™\)//) {
s/\s*//;
}
else {
PrintErrorMessage("Missing) after $token",$lc);
}
}

The subroutine chk lcb behaves in a similar way to the subroutine
chk 1lparen.

<subroutine chk 1lcb >= (<-U)

sub chk lcb {
my $token = $ [0];
my $lc =3 [1];
s/\s*//;

if ($ '~ /™N\{/) {
PrintErrorMessage("Missing { after $token",$1lc);

}

else {
s/™{\s*//;
}
}

Subroutine chk rcb behaves in a similar way to the subroutine
chk rparen.

<subroutine chk rcb >= (<-U)
sub chk rcb {
my $token $ [0];
my $lc =$ [1];
if ($ '~ /"\s*\}/) {
PrintErrorMessage("Missing } after $token",$lc);
}

else {
S/”™\s*}\s*//;
}

}

Subroutine chk lsb behaves in a similar way to the subroutine
chk 1lparen.

<subroutine chk 1sb >= (<-U)
sub chk 1lsb {

my $token = $ [0];
my $lc =3 [1];
s/\s*//;

if ($ '~ /"N\I[/) {
PrintErrorMessage("Missing [after $token",$lc);

}

else {
s/™\[\s*//;
}

}

Subroutine chk rsb behaves in a similar way to the subroutine
chk _rparen.

<subroutine chk rsb >= (<-U)
sub chk rsb {

my $token = $ [0];
my $lc =$ [1];
s/\s*//;

if ($_ !~ /MN\1/) {
PrintErrorMessage("Missing] after $token",$lc);

}

else {
s/™\1\s*//;
}
}

The subroutine chk comma checks whether the next token is a comma. If
it is not then it prints an error message, otherwise it consumes the
comma and any white space that follows the comma.

<subroutine chk comma >= (<-U)
sub chk_comma {
my $lc = $_[0];

s/\s*//;
if (/707 17) o
PrintErrorMessage("Did not find expected comma",$lc);
}
else {
s/™,\s*//;
}

The subroutine chk comment has only one parameter which is the current
line number. It checks whether the next input character is a comment
character and in this case it does nothing!. Otherwise, if there is
some trailing text it simply prints a warning to the screen.

<subroutine chk comment >= (<-U)
sub chk comment {
my $lc = $_[0];

s/\s*//;
if (/7%/) {
do nothing!

}
elsif (/7["%1/) {

PrintWarningMessage("Trailing text is ignored",$lc);
}

}

The subroutine print headers prints a header to the output file, as
well as a header to the LOG file. The header contains information
regarding the version of the program, a copyright notice, the command
line, date and time information, and the names of the various files
processed/generated.

<subroutine print headers >= (<-U)
sub print headers

{

my ($sec,$min,$hour,$mday, $mon, $year, $wday, $yday, $isdst) = localtime;
$year+=1900;
$mon+=1;
$now string = "$year/" . ($mon>9 ? "$mon/" : "O$mon/")
($mday>9 ? "$mday "1 "0$mday ")
($hour>9 ? "$hour:" : "O%$hour:")
($min>9 ? "$min:" : "O$min:")
($sec>9 ? "$sec" : "O%sec");
print OUT Mo* - -cmmmm i m e \n";
print OUT "%* mathspic (Perl version $version number)\n";
print OUT "%* A filter program for use with PiCTeX\n";
print OUT "%* Copyright (c) 2005-2010 A Syropoulos & RWD Nickalls \n";
print OUT "%* Command line: $0 $commandLineArgs\n";
print OUT "%* Input filename : $source file\n";
print OUT "%* OQutput filename: $out file\n";
print OUT "s* Date & time: $now string\n";
print OUT M%* - - mmmmmm i m e m e e e \n";

print LOG "----\n";

print LOG "$now string\n";

print LOG "mathspic (Perl version $version number)\n";

print LOG "Copyright (c) 2005-2010 A Syropoulos & RWD Nickalls \n";
print LOG "Input file $source file\n";

print LOG "Output file $out file\n";

print LOG "Log file $log file\n";

print LOG "----\n";

The subroutine get point parses an individual point name. If the next
token is also a point name then it returns the point name (but only if
the only if the point name exists in the PointTable). In all other

cases it returns the string undef to indicate that something 1is
wrong.

<subroutine get point >= (<-U)
sub get point {

my ($lc) = $_[0];
my ($PointName);

if (s/~([™\W\d _1\d{0,4})\s*//1i) { #point name
$PointName = $1;
if (!exists($PointTable{lc($PointName)})) {
PrintErrorMessage("Undefined point $PointName", $1lc);
return " _undef ";

}
else {
return lc($PointName);

}

}

else {
PrintErrorMessage("Point name expected",$lc);
return " undef ";

}

The subroutine perpendicular has 6 parameters that correspond to the
coordinates of some point P and to the coordinates of two points A and
B that define a line. The subroutine returns a pair of numbers that
correspond to the coordinates of a point that lies at the foot of the
perpendicular to the line AB that passes through point P. The slope of
line AB is m; and so its equation is y=m;x+c;. Similarly, the slope of
the line PF is m,=-1/m; and its equation is y=m,x+cC,. Since the line AB
passes through A, then c;=y,-m;x,. Similarly, as P is on line PF, then
C5=Yp-MyXp. Now point F is on both lines, therefore yg=m,x-+c, and
Yg=M;Xg+C;. Solving these equations for x; and yp gives:
Xg=(Cy-Cq)/ (my-my)
yp=(myCy-myCy)/ (my-my)

<subroutine perpendicular >= (<-U)
sub perpendicular {
my ($xP, $yP, $xA, $yA, $xB, $yB) = @_;
my ($xF, $yF, $deltax, $deltay, $ml, $m2, $cl, $c2, $factor);

$deltax = $xA - $xB;

return ($xA, $yP) if abs($deltax) < 0.0000001;
$deltay = $yA - $yB;

return ($xP, $yA) if abs($deltay) < 0.0000001;
$ml = $deltay / $deltax;

eval { $m2 = (-1) / $ml;};
PrintFatalError("Division by zero",$lc) if $@;
$cl = $yA - $ml * $xA;

$c2 $yP - $m2 * $xP;

eval { $factor =1/ ($ml - $m2)};
PrintFatalError("Division by zero",$lc) if $@;
return (($c2 - $cl) * $factor, ($ml * $c2 - $m2 * $cl) * $factor);

The subroutine Length computes the distance between two points A and

B. Notice, that the name of the subroutine starts with a capital L,
just to avoid conflict with the predefined Perl function. The
subroutine requires four parameters which are the coordinates of the
two points.

<subroutine lLength >= (<-U)
sub Length {
my ($xA, $yA, $xB, 3$yB)=@ ;
return sqrt(($xB - $xA)**2 + ($yB - $yA)**2);

The subroutine triangleArea computes the area of a triangle by using
Heron's formula, i.e., given a triangle ABC, we first compute
s=(AB+BC+CA)/2 and then the area of the triangle is equal to the
square root of s times (s-AB) times (s-BC) times (s-BA), where AB, BC,
and CA are the lengths of the three sides of the triangle. The
subroutine accepts 6 parameters, which correspond to the coordinates
of three points that define the triangle.

<subroutine triangleArea >= (<-U)
sub triangleArea {
my ($xA, $yA, $xB, $yB, $xC, $yC)=@_;
my ($lenAB, $lenBC, $lenCA, $s);

$1lenAB = Length($xA, $yA,$xB, $yB);
$1lenBC = Length($xB, $yB, $xC, $yC);
$lenCA = Length($xC,$yC,$xA, $yA);

$s = ($lenAB + $1lenBC + $lenCA) / 2;
return sqrt($s * ($s - $lenAB)*($s - $lenBC)*($s - $lenCA));

The subroutine poinOnLine accepts five arguments: the coordinates of
two points and the decimal number which corresponds to the distance
from the first point towards the second one. The way we compute the
coordinates of the point is fairly simple.

<subroutine pointOnlLine >= (<-U)
sub pointOnLine {
my ($xA, $yA, $xB, $yB, $dist)=@ ;
my ($deltax, $deltay, $xPol, $yPol);

$deltax = $xB - $xA;

$deltay = $yB - $yA;

$xPol = $xA + ($dist * $deltax / &Length($xA,$yA,$xB,$yB));
$yPol = $yA + ($dist * $deltay / &Length($xA,$yA,$xB,$yB));
return ($xPol, $yPol);

As we have mentioned above the subroutine circumCircleCenter takes six
arguments that correspond to the coordinates of three points that
define a triangle. The subroutine computes the coordinates of the
center of a circle that passes through these three points, and the
radius of the circle. We now describe how the subroutine computes the
center of the circle and its radius. Let the triangle points be tl, t2
and t3. We use the two pairs of points to define two sides, i.e., tlt2
and t2t3. For each side we locate the midpoints and get the their
coordinates. We check whether either of these two lines is either

vertical or horizontal. If this is true, we know that one of the
coordinates of the center of the circumcircle is the same as that of
the midpoints of the horizontal or vertical line. Next, we determine
the slopes of the lines t1lt2 and t2t3. We now determine the slope of
lines at right-angles to these lines. We solve the resulting equations
and obtain the center of the circumcircle. Now we get the radius, and
then we are done.

<subroutine circumCircleCenter >= (<=U)

sub circumCircleCenter {

my
my
my
my
my
my

if
{

($xA, $yA, $xB, $yB, $xC, $yC, $lc)=@ ;
($deltayl2, $deltaxl2, $xsl12, $ysl2);
($deltay23, $deltax23, $xs23, $ys23);
($xcc, $ycc);

($m23, $mr23, $c23, $ml2, $mrl2, $cl2);
($sideA, $sideB, $sideC, $a, $radius);

(abs(triangleArea($xA, $yA, $xB, $yB, $xC, $yC)) < 0.0000001)

PrintErrorMessage("Area of triangle is zero!",$lc);
return (0,0,0);

}
$deltayl2 = $yB - $yA;

$deltaxl2
$xs12
$ysl2

#

$deltay23
$deltax23
$xs23
$ys23

#

$xB - $xA;
$xA + $deltaxl2 / 2;
$yA + $deltayl2 / 2;

$yC - $yB;
$xC - $xB;
$xB + $deltax23 / 2;
$yB + $deltay23 / 2;

CCXYLINE: {

if
{

}
if
{

(abs($deltayl2) < 0.0000001)

$xcc = $xs12;
if (abs($deltax23) < 0.0000001)
{
$ycc = $ys23;
last CCXYLINE;
}
else
{
$m23 = $deltay23 / $deltax23;
$mr23 = -1 / $m23;
$c23 $ys23 - $mr23 * $xs23;
$ycc $mr23 * $xs12 + $c23;
last CCXYLINE;

}
(abs($deltax1l2) < 0.0000001)

$ycc = $ysl2;
if (abs($deltay23) < 0.0000001)
{
$xcc = $xs23;
last CCXYLINE;
}
else
{
$m23 = $deltay23 / $deltax23;
$mr23 = -1 / $m23;
$c23 $ys23 - $mr23 * $xs23;
$xcc ($ysl2 - $c23) / $mr23;

last CCXYLINE;

}
}
if (abs($deltay23) < 0.0000001)
{
$xcc = $xs23;
if (abs($deltax1l2) < 0.0000001)
{
$ycc = $ysl2;
last CCXYLINE;
}
else
{
$ml2 = $deltayl2 / $deltaxl2;
$mrl2 = -1 / $ml2;
$cl2 = $ysl2 - $mrl2 * $xs12;
$ycc = $mrl2 * $xcc + $cl2;
last CCXYLINE;
}
}
if (abs($deltax23) < 0.0000001)
{
$ycc = $ys23;
if (abs($deltayl2) < 0.0000001)
{
$xcc = $xs12;
last CCXYLINE;
}
else
{
$ml2 = $deltayl2 / $deltaxl2;
$mrl2 = -1 / $ml2;
$cl2 = $ysl2 - $mrl2 * $xs12;
$xcc = ($ycc - $cl2) / $mrl2;
last CCXYLINE;
}

}

$ml2 = $deltayl2 / $deltaxl2;
$mrl2 = -1 / $ml2;

$cl2 = $ysl2 - $mrl2 * $xs12;
#o oo

$m23 = $deltay23 / $deltax23;
$mr23 = -1 / $m23;

$c23 = $ys23 - $mr23 * $xs23;

$xcc = ($c23 - $cl2) / ($mrl2 - $mr23);

$ycc = ($c23 * $mrl2 - $cl2 * $mr23) / ($mrl2 - $mr23);
}

#

$sideA = &Length($xA, $yA, $xB, $yB);

$sideB = &Length($xB, $yB, $xC, $yC);

$sideC = &Length($xC, $yC, $xA, $yA);

$a = triangleArea($xA, $yA, $xB, $yB, $xC, $yC);
$radius = ($sideA * $sideB * $sideC) / (4 * $a);
#

return ($xcc, $ycc, $radius);

The subroutine ComputeDist is used to compute a distance that is
specified by either a float number, a pair of points, or a variable
name. In case we have a pair of identifiers, we check whether the
first one is a point. If it isn't a point we assume we have a variable
followed by a keyword. Otherwise, i.e., if it is a point name, we
check whether the second identifier is also a point name. If it is, we
simply return the distance between them, otherwise we issue an error

message. If we have only a single identifier, we check whether it is a
variable that has already been defined, and if so we return its value.

Since,

this subroutine is heavily used, it actually returns a pair of

numbers: the first one being the computed distance and the second one

being
there

an error indicator. If the value of this indicator is 0, then
is no error. If its value is 1, then there is an error.

Moreover, in case there is an error the distance is assumed to be

equal

to zero.

<subroutine ComputeDist >= (<-U)

sub ComputeDist {

my
my

($lc) = $ [0];
($v1, $v2);

if (s/7((\+]|-)?\d+(\.\d+)?([eE](\+]|-)?\d+)?)//) #is it a number?

{

return ($1, 1);

}
elsif (/7~[™\W\d _1\d{0,4}[™\W\d 1\d{0,4}/) #it is a pair of IDs?

{

}

s/~ ([M\W\d_]\d{0,4})//i;
$vl = $1;
if ('exists($PointTable{lc($vl)})) {
if (exists($VarTable{lc($vl)})) {
return ($VarTable{lc($vl)}, 1);
}

PrintErrorMessage("Point $v1 has not been defined", $1lc);
S/7\s*[™\W\d_]\d{0,4}//1;
return (0,0);

}

$vl = lc($vl);

s/”\s*([™\W\d_]\d{0,4})//1;

$v2 = $1;
if ('exists($PointTable{lc($v2)}))
{

PrintErrorMessage("Point $v2 has not been defined", $lc);
return (0,0);
}
$v2 = lc($v2);
my ($x1,$yl,$pSV1,$pSl) unpack("d3A*",$PointTable{$v1});
my ($x2,%$y2,$pSV2,$pS2) unpack("d3A*",$PointTable{$v2});
return (Length($x1,$yl,$x2,%$y2), 1);

elsif (s/~([™\W\d_]\d{0,4})//i) # it is a single id

{

}

$vl = $1;
if ('exists($VarTable{lc($vl)})) #it isn't a variable
{

PrintErrorMessage("Variable $v1 has not been defined", $1lc);
return (0,0);

}
return ($VarTable{lc($vl)}, 1);

else

{

}
}

PrintErrorMessage("Unexpected token", $lc);
return (0,0);

The subroutine intersectiondpoints has 8 parameters that correspond to
the coordinates of four points that uniquely determine two lines, and
computes the the point of intersection of these two lines.

<subroutine intersection4points >= (<-U)

sub intersectiond4points {

my ($x1, $yl, $x2, 3$y2, $x3, $y3, $x4, $y4) =
my ($deltayl2, $deltaxl2, $deltay34, $deltax34
my ($xcc, $ycc, $m34, $c34, $ml2, $cl2);

$deltayl2 = $y2 - $yl;
$deltaxl2 = $x2 - $x1;
#
$deltay34 = $y4 - $y3;
$deltax34 = $x4 - $x3;
I4PXYLINE:{
if (abs($deltayl2) < 0.0000001)
{
$ycc = $yl;

if (abs($deltax34) < 0.0000001)
{

$xcc = $x3;
last I4PXYLINE;

}

else

{
$m34 = $deltay34 / $deltax34;
$c34 = $y3 - $m34 * $x3;
$xcc = ($ycc - $c34) / $m34;
last I4PXYLINE;

}

(abs($deltax12) < 0.0000001)

$xcc = $x1;

if (abs($deltay34) < 0.0000001)
{

$ycc = $y3;
last I4PXYLINE;

}

else

{
$m34 = $deltay34 / $deltax34;
$c34 = $y3 - $m34 * $x3;
$ycc = $m34 * $xcc + $c34;
last I4PXYLINE;

}

(abs($deltay34) < 0.0000001)

$ycc = $y3;

if (abs($deltax12) < 0.0000001)
{

$xcc = $x1;
last I4PXYLINE;

}

else

{
$ml2 = $deltayl2 / $deltaxl2;
$cl2 = $yl - $ml2 * $x1;
$xcc = ($ycc - $cl2) / $ml2;
last I4PXYLINE;

}

(abs($deltax34) < 0.0000001)

$xcc = $x3;

if (abs($deltayl2) < 0.0000001)
{

$ycc = $yl;

last I4PXYLINE;

)i

}

The
the

}

else

{
$ml2
$cl?2
$ycc
last

$deltayl2 / $deltax12;

$yl - $ml2 * $x1;

$ml2 * $xcc + $cl2;
4PXYLINE;

L |

}
}
$ml2
$cl2
$m34
$c34
$xcc
$ycc

$deltayl2 / $deltaxl2;

$yl - $ml2 * $x1;

$deltay34 / $deltax34;

$y3 - $m34 * $x3;

($c34 - $cl12) / ($ml2 - $m34);

($c34 * $ml12 - $cl2 * $m34) / ($ml2 - $m34);

}

return ($xcc, $ycc);

subroutine IncircleCenter computes the center and the radius of
circle that is inside a triangle and touches the sides of the

triangle. The subroutine has six arguments that correspond to the
coordinates of three points that uniquely determine the triangle. Here

are

the details:

Let the triangle points be A, B, C and sides a, b, c, where side
B is opposite angle B, etc.

Use angles A and B only.

Let the bisector of angle A meet side a in point Al, and let the
distance of Al from B be designated BAl

Using the sine rule, one gets: BAl/c = a/(b+c), that is BAl = c *
a/(b+c).

Now do the same for side b, and determine equivalent point Bl.
CBl/a = b/(b+c), that is CB1 = a * b/(b+c).

We can now find the intersection of the line from point A to
point Al, and the line from point B to point Bl. We have four
points, so we use the mathspic internal intersection4points
subroutine to return the coordinates of the intersection X;, Y,

i
Now get the radius: R=(area of triangle)/(a+b+c)/2
Finally, return the radius and the coordinates of the center.

<subroutine IncircleCenter >= (<-U)

sub IncircleCenter {

my ($Ax, $Ay, $Bx, $By, $Cx, $Cy) = @ ;
my ($sideA, $sideB, $side(C);
my ($bal, $xAl, $yAl, $cbl, $acl, $xBl, $yBl, $xC1l, $yCl, $%a, $s, $r);

#determine the lengths of the sides

$sideA = Length($Bx, $By, $Cx, $Cy);
$sideB = Length($Cx, $Cy, $Ax, $Ay);
$sideC = Length($Ax, $Ay, $Bx, $By);
#

$bal = ($sideC * $sideA) / ($sideB + $sideC);

($xA1, $yAl) = pointOnLine($Bx, $By, $Cx, $Cy, $bal);

$cbl = ($sideA * $sideB) / ($sideC + $sideA);

($xB1, $yBl) = pointOnLine($Cx, $Cy, $Ax, $Ay, $cbl);

$acl = ($sideB * $sideC) / ($sideA + $sideB);

($xC1, $yCl) = pointOnLine($Ax, $Ay, $Bx, $By, $acl);

($xcenter, $ycenter) = &intersectiondpoints($Ax, $Ay, $xAl, $yAl,
$Bx, $By, $xBl, $yBl);

get radius

$a = &triangleArea($Ax, $Ay, $Bx, $By, $Cx, $Cy);
$s = ($sideA + $sideB +$sideC) / 2;
$r = $a / $s;

return ($xcenter, $ycenter, $r);

The subroutine Angle takes six arguments which correspond to the
coordinates of three points that define an angle. The subroutine
computes the opening of the angle in degrees. In case there is an
error it returns the number -500. ****EXPLAIN THE ALGORITHM****

<subroutine Angle >= (<-U)
sub Angle {
my ($Ax, $Ay, $Bx, $By, $Cx, $Cy) = @ ;
my ($RAx, $RAy, $RBx, $RBy, $RCx, $RCy, $deltax, $deltay);
my ($lineBA, $lineBC, $lineAC, $k, $kk, $angle);
my ($T, $cosT, $sinT) = (0.3, cos(0.3), sin(0.3));

$RAX = $AX * $cosT + $Ay * $sinT;
$RAy = -$Ax * $sinT + $Ay * $cosT;
$RBx = $Bx * $cosT + $By * $sinT;
$RBy = -$Bx * $sinT + $By * $cosT;
$RCx = $Cx * $cosT + $Cy * $sinT;
$RCy = -$Cx * $sinT + $Cy * $cosT;
$deltax = $RBx - $RAXx;

$deltay = $RBy - $RAy;

$lineBA = sqgrt($deltax*$deltax + $deltay*$deltay);
if ($1ineBA < 0.0000001)

{
return -500;
}
$deltax = $RBx - $RCx;
$deltay = $RBy - $RCy;
$1ineBC = sqgrt($deltax*$deltax + $deltay*$deltay);
if ($lineBC < 0.0000001)
{
return -500;
}
$deltax = $RAXx - $RCx;
$deltay = $RAy - $RCy;
$1lineAC = sqgrt($deltax*$deltax + $deltay*$deltay);
if ($1lineAC < 0.0000001)
{
return -500;
}
$k = ($lineBA*$1lineBA + $1ineBC*$1ineBC - $1lineAC*$1lineAC) /
(2 * $1lineBA * $1ineBC);
$k = -1 if $k < -0.99999;
$k = 1 if $k > 0.99999;
$kk = $k * $k;
if (($kk * $kk) == 1)
{
$angle = PI if $k == -1;
$angle = 0 if $k == 1;
}
else
{
$angle = (PI / 2) - atan2($k / sqrt(l - $kk),1);

}
return $angle * 180 / PI;

The subroutine excircle computes the center and the radius of a circle
that externally touches a given side (4th and 5th arguments) of
triangle (determined by the 1lrst, the 2nd and 3rd argument). Here are
the details:

 Let the triangle points be A, B, C, and the given side be BC.

« Now calculate the radius of Excircle = (triangle area)/(s - side
length), where s = (a+b+c)/2

+ Calculate the distance from the angle (A) (opposite the given
side BC) to the excircle center = radius/sin(A/2)

* Now determine the the Excircle center by locating it on the angle
bisector (i.e., same line that the IncircleCenter is on), but at
distance d further away from angle A. So, we now have the
Incircle center (I), determine deltaX and deltaY from I to A,
calculate the distance AI, and then extend the line from I by
distance d to Excenter Xc, Yc.

<subroutine excircle >= (<-U)
sub excircle {

my ($A, $B, $C, $D, $E) = @_;

my ($Ax, $Ay, $Bx, $By, $Dx, $Dy, $Ex, $Ey, $ASVA, $ASA) ;

($Ax, $Ay, $ASVA, $ASA)=unpack("d3A*",$PointTable{$A});

($Bx, $By, $ASVA, $ASA)=unpack("d3A*",$PointTable{$B});

($Cx, $Cy, $ASVA, $ASA)=unpack("d3A*",$PointTable{$C});
) ;
) ;

($Dx, $Dy, $ASVA, $ASA)=unpack("d3A*",$PointTable{$D}
($Ex, $Ey, $ASVA, $ASA)=unpack("d3A*",$PointTable{$E}
my ($sideA, $sideB, $sideC, $s, $R, $theAdeg, $d);
my ($Xmypoint, $Ymypoint, $deltax, $deltay, $mylength, $xc, $yc);

~— ~— ~— ~—
—_— o~ o~ —~

$sideA = &Length($Bx, $By, $Cx, $Cy);
$sideB = &Length($Cx, $Cy, $Ax, $Ay);
$sideC = &Length($Ax, $Ay, $Bx, $By);

$s = ($sideA + $sideB + $sideC) / 2;
$R = triangleArea($Ax, $Ay, $Bx, $By, $Cx, $Cy) /
($s - &Length($Dx, $Dy, $Ex, $Ey));
if (($D eq $A && $E eq $B) || ($D eq $B && SE eq $A))

$theAdeg = &Angle($Bx, $By, $Cx, $Cy, $Ax, $Ay);

$Xmypoint = $Cx;
$Ymypoint = $Cy;
elsif (($D eq $B && $E eq $C) || ($D eq $C && $E eq $B))
{
$theAdeg = &Angle($Cx, $Cy, $Ax, $Ay, $Bx, $By);
$Xmypoint $AX;

$Ymypoint = $Ay;

elsif (($D eq $C && $E eq $A) || ($D eq $A && $E eq $C))
{
$theAdeg = &Angle($Ax, $Ay, $Bx, $By, $Cx, $Cy);
$Xmypoint $Bx;
$Ymypoint $By;

else

{

}

$d = $R / sin($theAdeg * PI / 180 / 2);

my ($xIn, $yIn, $rin) = &IncircleCenter($Ax, $Ay, $Bx, $By, $Cx, $Cy);
$deltax = $xIn - $Xmypoint;

$deltay = $yIn - $Ymypoint;

$mylength = sqrt($deltax*$deltax + $deltay*$deltay);

$xc = $Xmypoint + $d * $deltax / $mylength;

return (0,0,0);

$yc = $Ymypoint + $d * $deltay / $mylength;
return ($xc, $yc, $R);
}

The DrawLineOrArrow subroutine is used to parse the arguments of the
commands drawline, drawthickline, drawarrow, drawthickarrow and
drawCurve. In general, these commands have as arguments a list of
points separated by commas that are used to draw a set of lines. The
list of points is enclosed in parentheses. Here we give only the
syntax of the drawline comma, as the syntax of the other commands is
identical:

drawline ::= "drawline" "(" Points { "," Points } ")"
Points ::= Point { separator Point}
separator ::= blank | empty

In the following code we scan a list of points (possibly separated by
blanks) and we stop when we encounter either a comma or some other
character. In case we have found a comma, we check whether we have a
drawline command and if this is the case we plot the list of points.
We continue with the next list of points, until there are no more
points. The inner while-loop is used to control the consumption of
point tokens and the external to reset the array PP which holds the
point names.

<subroutine DrawlLineOrArrow >= (<-U)
sub DrawLineOrArrow {
my $draw Line = shift;
my $lc = shift;
my $lineLength =
my $stacklen = 0;
my @PP = ();
if ($draw Line !'= 2) {
s/\s*//;
if (s/"\[\s*//) { # optional length specifier
$lineLength = expr($lc);
if ($lineLength <= 0) {
PrintErrorMessage("length must greater than zero",$lc);
$lineLength = -1;

_1;

chk rsb("optional part",$lc);
}

}
chk lparen("$cmd", $lc);
DRAWLINES:while(1) {
@PP = () ;
while(1l) {
if (s/7~(["\W\d_]\d{0,4})\s*//1i) { #point name
$P = $1;
if (!exists($PointTable{lc($P)})) {
PrintErrorMessage("Undefined point $P",$1c);
}
else {
push (@PP,$P);
}
}
else {
$stacklen = @PP;
if ($draw Line != 2) {
if ($stacklen <= 1) {
PrintErrorMessage("Wrong number of points",$lc);
}

HoHHHHE B HHH

else {
push(@PP,$1lc);
if ($draw Line == 0) {
drawarrows (@PP) ;

elsif ($draw Line == 1) {
drawlines (@PP);
}
}
}
if (s/”~,\s*// and $draw Line != 2) {
next DRAWLINES;

}
else {
last DRAWLINES;
}
}
}
}
if ($draw Line == 2) {

$stacklen = @PP;
if ($stacklen < 2) {
PrintErrorMessage("Wrong number of points",$lc);

}
elsif ($stacklen % 2 == 0) {
PrintErrorMessage("Number of points must be odd",$1lc);
}
else {
drawCurve(@PP) ;
}

chk _rparen("arguments of $cmd",$lc);
chk _comment ($1c);

}

The subroutine drawarrows is used to draw one or more lines. The
subroutine accepts as argument an array which contains the names of
the points which define the lines, plus the current program line
number. Each arrow is printed using the following code:

\arrow < ArrowLength mm> [beta , gamma] from x1 yl to x2 y2
where beta is equal to tan($arrowAngleB * d2r /2) and gamma is equal
to 2*tan($arrowAngleC * d2r / 2).

<subroutine drawarrows >= (<-U)
sub drawarrows {
my ($NoArgs);
$NoArgs = @ ;
my ($lc) = $ [$NoArgs-1]; #line number is the last argument
my ($NumberOfPoints, $p, $q, $rl2, $d12);
my ($px,$py,$pSV,$pS, $ax,$qy,$qsV,$qS);

$NumberOfPoints = $NoArgs - 1;
LOOP: for(my $i=0; $i < $NumberOfPoints - 1; $i++)
{

$p = $_[%1i];

$q = $_[$i+1];

($px, $py, $pSV, $pS) unpack("d3A*",$PointTable{lc($p)});
($ax,%qy, $qSV,$qS) = unpack("d3A*",$PointTable{lc(%$q)});

$pSV = $defaultLFradius if $pSV == 0;
$gSV = $defaultLFradius if $qSV == 0;
$rl12 = $pSV + $qSV;

$d12 = Length($px,$py,$ax,s$qy);

if ($d12 <= $rl12)
{

if($d1l2 == 0)
{
PrintErrorMessage("points $p and $q are the same", $1lc);
next LOOP;
}
PrintWarningMessage("arrow pq not drawn: points too close or ".
"radii too big", $lc);

next LOOP;
}
($px, $py) = pointOnLine($px, $py, $agx, $qy, $pSV) if $pSV > 0;
($gx, $qy) = pointOnLine($gx, $qy, $px, $py, $qSV) if $qSV > 0;

my ($beta, $gamma);

$beta = tan($arrowAngleB * D2R / 2);

$gamma = 2 * tan($arrowAngleC * D2R / 2);

printf OUT "\\arrow <%.5f%s> [%.5T,%.5f] from %.5f %.5f to %.5f %.5f\n",
$arrowLength, $arrowLengthUnits, $beta, $gamma, $px, $py, $q9x, $qy;

The subroutine drawlines is used to draw one or more lines. The
subroutine accepts as argument an array which contains the names of
the points which define the lines, plus the current program line
number. If there are only two points (i.e., only one line), then we
output the following PiCTeX code:
\plot x1 yl x2 y2 / %% pointnamel pointname2

If there are more than two points, then we need to write the PiCTeX
code in pairs with two points on each line (just to keep things
simple) as follows:

\plot x1 yl x2 y2 / %% pointnamel pointname2 \plot x2 y2 x3 y3 / %

pointname2 pointname3 \plot x3 y3 x4 y4 / %% pointname3 pointname4
An important part of the subroutine is devoted to checking whether
either or both of the pairs of points are associated with a line-free
zone, and if so, then we must take care not to draw the line inside
the line-free zone. If a point does have a line-free zone, then we use
the pointOnLine subroutine to determine the point on the line which 1is
just on the line-free boundary, and draw the line to the that point
instead of to the exact point-location.

o
)

<subroutine drawlines >= (<-U)
sub drawlines {
my ($NoArgs);
$NoArgs = @ ;
my ($lc) = $ [$NoArgs-1]; #line number is the last argument
my ($NumberOfPoints, $p, $q, $rl2, $d12);
my ($px,$py,$pSV,$pS, $ax,$qy,$qsV,$qS);

$NumberOfPoints = $NoArgs - 1;
LOOP: for(my $i=0; $i < $NumberOfPoints - 1; $i++)
{

$p = $_[%1i];

$q = $_[$i+1];
($px, $py, $pSV, $pS) unpack("d3A*",$PointTable{lc($p)});
($ax,%qy, $qSV,$qS) = unpack("d3A*",$PointTable{lc(%$q)});

$pSV = $defaultLFradius if $pSV == 0;
$qSV = $defaultLFradius if $qSV == 0;
$rl12 = $pSV + $qSV;
$d12 = Length($px,$py,$ax,$qy);
if ($d12 <= $rl12)

if($d12 == 0)

{

PrintErrorMessage("points $p and $q are the same", $1lc);

next LOOP;
}
PrintWarningMessage("line pg not drawn: points too close or ".
"radii too big", $lc);
next LOOP;

}
($px, $py) = pointOnLine($px, $py, $ax, $qy, $pSV) if $pSV > O;
($9x, $qy) = pointOnLine($qx, $qy, $px, $py, $qSV) if $qsV > 6;
?f ($px == $ax || $py == $qy)
printf OUT "\\putrule from %.5f %.5f to %.5f %.5f %%%% %s%s\n",
$px, $py, $ax, $qy, $p, $q;
}
else
{
printf OUT "\\plot %.5f %.5f\t%.5f %.5f / %%%% %s%s\n"
$px, $py,$ax,$qy,$p,$q;

’

The subroutine drawCurve is used to draw a curve that passes through
an odd number of points. The subroutine has as argument an array which
contains the names of the points which define the lines plus the

current program line number. The subroutine emits code that has the
following general form:

\setquadratic
\plot

X1 Yl

X2 Y2

X3 Y3
\setlinear

<subroutine drawCurve >= (<-U)
sub drawCurve {
my ($NoArgs);
$NoArgs = @ ;
my ($lc) = $ [$NoArgs-1]; #line number is the last argument
my ($NumberOfPoints, $p);

$NumberOfPoints = $NoArgs - 1;

print OUT "\\setquadratic\n\\plot\n";
for(my $i=0; $i <= $NumberOfPoints; $i++)
{

$p = $_[$il;
my ($px,$py,$pSV,$pS) = unpack("d3A*",$PointTable{lc($p)});
printf OUT "\t%0.5f %0.5f", $px, $py;
print OUT (($i == $NumberOfPoints) ? " / %$p\n" : " %$p\n");
}
print OUT "\\setlinear\n";

The subroutine drawpoints is used to draw one or more points. The
subroutine has as arguments a list of points. For each point we
produce code that has the following general form:

\put {SYMBOL} at Px PY
where SYMBOL is either the default plot symbol, i.e., \bullet,
whatever the user has set with the PointSymbol command, or the plot
symbol specified in the definition of the point.

<subroutine drawpoints >= (<-U)
sub drawpoints {
my ($NumberOfPoints,$p);
$NumberOfPoints = @ ;
my ($px, $py,$pSV,$pS);

for($i=0; $i < $NumberOfPoints; $i++)
{

$p = $_[$1i];
($px, $py, $pSV, $pS) = unpack("d3A*",$PointTable{lc($p)});
if ($pS eq "" and $defaultsymbol =~ /circle|square/) {
$pS = $defaultsymbol;
}
POINTSWITCH: {
if ($pS eq "") # no plot symbol specified
{

printf OUT "\\put {%s} at %.5f %.5
$defaultsymbol, $px, $p
last POINTSWITCH;

}
if ($pS eq "circle") # plot symbol is a circle
{

< -
A
©

my $radius = (defined($DimOfPoint{lc($p)})) ? $DimOfPoint{lc($p)} :
$GlobalDimOfPoints;
if ($radius > 0) # draw a circle using the current units

if ($radius == 1.5) # use \bigcirc

{
printf OUT "\\put {\$\\bigcirc\$} at %.5f %.5f %%%% %s\n",
$px, $py, $p;
}
else
{

printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f

%.5T %%%% %s\n",

}

$px+$radius, $py, $px, $py, $p;
}

else #use \circ symbol

{
printf OUT "\\put {\$\\circ\$} at %.5T %.5f %%%% %s\n",
$px, $py, $p;

}
last POINTSWITCH;

}
if ($pS eq "square")
{

my $side = (defined($DimOfPoint{lc($p)})) ? $DimOfPoint{lc($p)}
$GlobalDimOfPoints;

printf OUT "\\put {%s} at %.5f %.5f %%%% %s\n",
drawsquare($side), $px, $py, $p;

last POINTSWITCH;

}
printf OUT "\\put {%s} at %.5T %.5f %%%% %s\n", $pS, $px, $py,$p;
}
}
}

The subroutine drawAngleArc gets six arguments which correspond to
three points defining an angle (variables $P1, $P2 and $P3), the
radius, the internal/external specification and the direction
specification (clockwise or anticlockwise). Depending on the values of
these arguments, the subroutine returns the corresponding PiCTeX code,
the general format of which 1is

\circulararc Angle degrees from x y center at x2 y2

where Angle is the angle that the three points P1 P2 P3 define
(computed by subroutine Angle), and x and y are the coordinates of a
point residing on line P2P1 at distance equal to a $radius from point
$P2; and x2, y2 are the coordinates of the center of the circle about
which the arc is drawn, i.e., point $P2.

<subroutine drawAngleArc >= (<-U)
sub drawAngleArc {

my ($P1, $P2, $P3, $radius, $inout, $direction) = @ ;

my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$P1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2});
my ($x3,$y3,$pSV3, $pS3)=unpack("d3A*",$PointTable{$P3});

my $internalAngle = Angle($x1, $yl, $x2, $y2, $x3, $y3);
my $externalAngle = 360 - $internalAngle;
my ($x, $y) = pointOnLine($x2, $y2, $x1, $yl, $radius);
my $code = "";
if ($inout eq "internal" and $direction eq "clockwise") {
$code = sprintf "\\circulararc %.5f degrees from %.5f %.
%.5f\n",

5f center at %.5f
-1 * ¢$internalAngle, $x, $y, $x2, $y2;

elsif ($inout eq "internal" and $direction eq "anticlockwise") {
$code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f
%.5f\n",
$internalAngle, $x, $y, $x2, $y2;

elsif ($inout eq "external" and $direction eq "clockwise") {
$code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f
%.5f\n",
-1 * $externalAngle, $x, $y, $x2, $y2;

elsif ($inout eq "external" and $direction eq "anticlockwise") {
$code = sprintf "\\circulararc %.5f degrees from %.5f %.5f center at %.5f
%.5f\n",

}

return $code;

$externalAngle, $x, $y, $x2, $y2;

The subroutine drawAngleArrow gets six arguments which correspond to
three points defining an angle (variables $P1, $P2 and $P3), the
radius, the internal/external specification and the direction
specification. The subroutine mainly draws the arrowhead, and calls
the subroutine drawAngleArc to draw the arc part of the arrow.

<subroutine drawAngleArrow >= (<-U)

sub drawAngleArrow {
my ($P1, $P2, $P3, $radius, $inout, $direction) = @ ;
my ($x1,$yl,$pSV1, $pS1l)=unpack("d3A*",$PointTable{$P1});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2});
my ($x3,$y3,$pSV3, $pS3)=unpack("d3A*",$PointTable{$P3});

my $code = drawAngleArc($P1l, $P2, $P3, $radius, $inout, $direction);

my ($xgp, $ygp) = pointOnLine($x2, $y2, $x1, $yl, $radius);
my ($deltax, $deltay) = ($x1 - $x2, $yl - $y2);
my $AL;

if ($xunits =~ /mm/) {
$AL = 1;

}
elsif ($xunits =~ /cm/) {

$AL = 0.1;

}

elsif ($xunits =~ /pt/) {
$AL = 2.845;

}

elsif ($xunits =~ /bp/) {
$AL = 2.835;

}

elsif ($xunits =~ /pc/) {
$AL = 0.2371;

}

elsif ($xunits =~ /in/) {
$AL = 0.03937;

}

elsif ($xunits =~ /dd/) {
$AL = 2.659;

}

elsif ($xunits =~ /cc/) {
$AL = 0.2216;

}

elsif ($xunits =~ /sp/) {
$AL = 186467.98;
}
my $halfAL = $AL / 2;
my $d = sqrt($radius * $radius - $halfAL * $halfAL);
my $alpha = atan2($d / $halfAL, 1) * R2D;
my $beta = 2 * (90 - $alpha);
my $thetaqr;
if (abs($deltay) < 0.00001) {

if ($deltax > 0) {$thetaqr = 0 }
elsif ($deltax < 0) {$thetaqr = -180}
}
else {

if (abs($deltax) < 0.00001) {
$thetaqr = 90;
}

else {
$thetaqr = atan2($deltay / $deltax, 1) * R2D;
}

}
my ($xqr, $yqr) = pointOnLine($x2, $y2, $x3, $y3, $radius);
$deltax = $x3 - $x2;
$deltay = $y3 - $y2;
$alpha = atan2(sqrt($radius * $radius - $halfAL * $halfAL) / $halfAL, 1) /
D2R;
$beta = 2 * (90 - $alpha);
LINE2 : {
if (abs($deltax) < 0.00001) {
if ($deltay > 0) { $thetagr = 90 }

elsif ($deltay < 0) { $thetaqr = - 90 }
last LINE2;

}

else {
$thetaqr = atan2($deltay / $deltax, 1) * R2D;

}

if (abs($deltay) < 0.00001) {
if ($deltax > 0) { $thetaqr = 0 }
elsif ($deltax < 0) { $thetaqr = -180 }
last LINE2;

}

else {

$thetaqr = atan2($deltay / $deltax, 1) * R2D;

}
if ($deltax < 0 and $deltay > 0) { $thetagr += 180 }
elsif ($deltax < 0 and $deltay < 0) { $thetaqr += 180 }

elsif ($deltax > 0 and $deltay < 0) { $thetagr += 360 }

}

my $xgrleft = $x2 + $radius * cos(($thetaqr + $beta) * D2R);
my $yqrleft = $y2 + $radius * sin(($thetaqr + $beta) * D2R);
my $xqrright = $x2 + $radius * cos(($thetaqr - $beta) * D2R);
my $yqrright = $y2 + $radius * sin(($thetaqr - $beta) * D2R);
if ($inout eq "internal" and $direction eq "clockwise") {

$code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to
$xqrleft, $yqrleft, $xqr, $yqr;

elsif ($inout eq "internal" and $direction eq "anticlockwise")
$code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to

$xqrright, $yqrright, $xqr, $yqr;

elsif ($inout eq "external" and $direction eq "clockwise") {
$code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to
$xqrleft, $yqrleft, $xqr, $yqr;
}
elsif ($inout eq "external" and $direction eq "anticlockwise")
$code .= sprintf "\\arrow <1.5mm> [0.5, 1] from %.5f %.5f to
$xqrright, $yqrright, $xqr, $yqr;
}

return $code;

oP

o°

o°

o°

.5f

5f

5f

5f

\O

5. 5f\n",

\O

5. 5f\n",

o°

.5f\n",

\O

5. 5f\n",

The subroutine expr is used to parse an expression. We are using a
recursive descent parser to parse and evaluate an expression. The
general syntax of an expression is as follows:

expr = term { addop term }
addop = II+II | II_II
term = factor { mulop factor }
mulop = II*II | II/II | n r.emll
factor = primitive [** factor]
primitive ::= ["+" | "-"] primitive | number | variable
I
pair-of-points | "(" expr ")" |
"sin (" expr ")" | "cos (" expr ")" | "area (" ThreePoints
n) n |
Iltan (n expr n) n I IIeXp (n expr. n) n | Ilint n n (n expr. n) n
I
Il'Log (Il expr II)II I Ilatan (II expr II)II | IngnIl II(II expr II)II
I
"Sqrt (II expr II)II I Ila(:c)S (II expr II)II | Ilas:i-n (II expr II)II
|
Ila.tan (n expr n) n | Il_pi_ll | Il_e_ll
|
"xcoord (" point ")" | "ycoord (" point ")" | "angle "("
ThreePoints ")"|
"angledeg" " (" ThreePoints ")" | "direction" " (" TwoPoints ")" |
"directiondeg" " (" TwoPoints ")" | " linethickness "

Note that pi and e

constants Pi and e.

<subroutine expr >= (<-U)

sub expr {

my $lc = $_[0];
my ($left, $op,$right);

$left = term($lc);

while ($op = addop
$right = term($1
if ($op eq '+')

) {
c);

can be used to access the value of the

{ $left += $right }
else
{ $left -= $right }

}
return $left;
}

sub addop {
s/~ ([+-1)//7 && $1;
}

sub term {
my $lc = $_[0];
my ($left, $op, $right);
$left = factor($lc);
while ($op = mulop()) {
$right = factor($lc);
if ($op eq '*')
{ $left *= $right }
elsif ($op =~ /rem/i) {
eval {$left %= $right};
PrintFatalError("Division by zero", $lc) if $@;
}
else {
eval {$left /= $right};
PrintFatalError("Division by zero", $lc) if $@;
}
}
return $left;
}

sub mulop {
(s#~([*/1)## || s/~(rem)//i) && 1c($1);
}

sub factor {
my $lc = $_[0];
my ($left);

$left = primitive($lc);
if (s/"**//) {
$left **= factor($lc);

}
return $left;
}

sub primitive {
my $lc = $_[0];
my $val;
s/\s*//;
if (s/”\(//) { #is it an expr in parentheses
$val = expr($lc);
s/™\)// || PrintErrorMessage("Missing right parenthesis", $1lc);

elsif (s/~-//) { # is it a negated primitive
$val = - primitive();
}
elsif (s/™\+//) { # is it a positive primitive
$val = primitive();
}
elsif (s/"angledeg//i) {
chk 1lparen("angledeg",$lc);
my $point 1 = get point($lc);
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$point 1});
my $point 2 = get point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point 2});
my $point 3 = get point($lc);

my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point 3});

my $d12 = Length($x1, $yl, $x2, $y2);

my $d23 = Length($x2, $y2, $x3, $y3);

my $d31 = Length($x3, $y3, $x1, $yl);

if ($d12 ==) {
PrintErrorMessage("points “$point 1' and “$point 2' are the same", $1lc);
$val = 0;

}

elsif ($d23 ==) {
PrintErrorMessage("points “$point 2' and “$point 3' are the same", $1lc);
$val = 0;

}

elsif ($d31 == 0) {
PrintErrorMessage("points “$point 1' and “$point 3' are the same", $1lc);

$val = 0;

}

else {
$val = Angle($x1, $yl, $x2, $y2, $x3, $y3);
$val = 0 if $val == -500;

}

chk _rparen("Missing right parenthesis", $1lc);
}
elsif (s/"angle//i) {
chk 1lparen("angle",$lc);
my $point 1 = get point($lc);
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*", $PointTable{$point 1});
my $point 2 = get point($lc);
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point 2});
my $point 3 = get point($lc);
my ($x3,$y3,$pSV3, $pS3)=unpack("d3A*",$PointTable{$point 3});
my $d12 Length($x1, $yl, $x2, $y2);
my $d23 Length($x2, $y2, $x3, $y3);
my $d31 Length($x3, $y3, $x1, $yl);
if ($d12 == 0) {
PrintErrorMessage("points “$point 1' and “$point 2' are the same", $1lc);
$val = 0;

}

elsif ($d23 ==) {
PrintErrorMessage("points “$point 2' and “$point 3' are the same", $1lc);
$val = 0;

}
elsif ($d31 ==) {
PrintErrorMessage("points “$point 1' and “$point 3' are the same", $1lc);
$val = 0;
}
else {
$val = Angle($x1, $yl, $x2, $y2, $x3, $y3);
if ($val == -500) {
$val = 0;
}
else {
$val = D2R * $val;
}
}
chk rparen("Missing right parenthesis", $1lc);
}
elsif (s/~area//i) {
chk 1lparen("angledeg",$lc);
my $point 1 = get point($lc);
my ($x1,%$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$point 1});
my $point 2 = get point($lc);
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point 2});
my $point 3 = get point($lc);
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point 3});
$val = triangleArea($x1l, $yl, $x2, $y2, $x3, $y3);
chk _rparen("Missing right parenthesis", $1lc);

elsif (s/”asin//i) {
chk 1lparen("asin");
$val = expr();
PrintFatalError("Can't take asin of $val", $lc) if $val < -1 || $val > 1;
$val = asin($val);
chk rparen("Missing right parenthesis", $lc);
}
elsif (s/”acos//i) {
chk lparen("acos");
$val = expr();
PrintFatalError("Can't take acos of $val”, $lc) if $val < -1 || $val > 1 ;
$val = acos($val);
chk rparen("Missing right parenthesis", $lc);

}
elsif (s/”atan//i) {
chk 1lparen("atan");
$val = expr();
$val = atan($val);
chk _rparen("Missing right parenthesis", $1lc);

}
elsif (s/”~cos//i) {
chk lparen("cos");
$val = expr();
$val = cos($val);
chk _rparen("Missing right parenthesis", $1lc);

}
elsif (s/~directiondeg//i) {
chk lparen("directiondeg",$lc);
my $point 1 = get point($lc);
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$point 1});
my $point 2 = get point($lc);
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point 2});
my $x3 = $x1+1;
if (($y2 - $yl) >= 0) {

$val = Angle($x3, $yl, $x1, $yl, $x2, $y2);
$val = 0 if $val == -500;
}
else {
$val = 360 - Angle($x3, $yl, $x1, $yl, $x2, $y2);
$val = 0 if $val == -500;
}

chk _rparen("Missing right parenthesis", $1lc);

}
elsif (s/~direction//i) {
chk lparen("direction",$lc);
my $point 1 = get point($lc);
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$point 1});
my $point 2 = get point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point 2});
my $x3 = $x1+1;
if (($y2 - $yl) >=0) {

$val = Angle($x3, $yl, $x1, $yl, $x2, $y2);
$val = 0 if $val == -500;
$val = D2R * $val;
}
else {
$val = 360 - Angle($x3, $yl, $x1, $yl, $x2, $y2);
$val = 0 if $val == -500;
$val = D2R * $val;
}

chk rparen("Missing right parenthesis", $lc);
}
elsif (s/~exp//i) {

chk_1lparen("exp");

$val = expr();

$val = exp($val);

chk _rparen("Missing right parenthesis", $1lc);

}
elsif (s/”int//1i) {
chk _1lparen("int");
$val = expr();
$val = int($val);
chk rparen("Missing right parenthesis", $lc);
}
elsif (s/"log//i) {
chk 1lparen("log");
$val = expr();
PrintFatalError("Can't take log of $val", $lc) if $val <= 0;
$val = log($val);
chk rparen("Missing right parenthesis", $lc);

}
elsif (s/”sin//i) {
chk _lparen("sin");
$val = expr();
$val = sin($val);
chk _rparen("Missing right parenthesis", $1lc);

}

elsif (s/”~sgn//i) {
chk _1lparen("sgn");
$val = expr();
if ($val > 0) {

$val = 1;

}

elsif ($val == 0) {
$val = 0;

}

else {
$val = -1;

}

chk rparen("Missing right parenthesis", $1lc);
}
elsif (s/”~sqrt//i) {

chk lparen("sqrt");

$val = expr();

$val = sqrt($val);

chk _rparen("Missing right parenthesis", $1lc);
}
elsif (s/~tan//i) {

chk _1lparen("tan");

$val = expr();

$val = sin($val)/cos($val);

chk _rparen("Missing right parenthesis", $1lc);
}
elsif (s/”xcoord//i) {

chk lparen("xcoord");

my $point name = get point;

my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$point name});

$val = $x1;

chk rparen("Missing right parenthesis", $lc);

}
elsif (s/”ycoord//i) {
chk lparen("ycoord");
my $point name = get point;
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*", $PointTable{$point name});
$val = $yl;
chk rparen("Missing right parenthesis", $lc);
}
elsif (s/” pi //1i) {
$val = PI;

}
elsif (s/~ e //1) {

$val = 2.71828182845905;
}

elsif (s/~ linethickness //i) A

$val = $LineThickness / $xunits;
}
else {
my $err code;
($val,$err code) = ComputeDist($lc);

}
s/\s*//;
return $val;

The subroutine memberOf is used to check whether a string is part of a
list of strings. We assume that the first argument is the string in
question. We compare each list element against the string in question
and if we find it we stop and return the value 1 (denoting truth).
Otherwise, we simply return the value 0 (denoting false).

<subroutine memberOf >= (<-U)
sub memberOf {
my $elem = shift(@);

my $found = 0;
foreach $item (@){
if ($item eq $elem){
$found = 1;
last;
}
}
return $found;

}

The subroutine midpoint computes the coordinates of the midpoint of
two points by means of the simple formula:

me=X1+(y; - ¥1)/2

m=y+ (X, - Xq)/2

<subroutine midpoint >= (<-U)

sub midpoint {
my ($x1, $yl, $x2, 3$y2)=@ ;
return ($x1 + ($x2 - $x1)/2
$yl + ($y2 - $yl)/2

);

The subroutine tand computes the tangent of an angle. The angle is
supposed to be in degrees. We simply transform it into radians and
then compute the actual result.

<subroutine tand >= (<-U)
sub tand {

my $d = $ [0];

$d = $d * PI / 180;

return sin($d)/cos($d);
}

The subroutine get string is used to extract a leading valid mathspic
string from the input line. A string must start with a quotation mark,
i.e., ", and must end with the same symbol. A string may contain

guotation marks which must be escaped with a backslash, i.e., \.
Initially, we remove all leading white space. If the next character of
the string is not a quotation mark we print an error message and stop.
Otherwise, we split the string into an array of characters and store
the characters up to the next quotation mark to the array @cmd. In
case the next character is a backslash and we aren't at the end of the
input string and the next character is a quotation mark, we have an
escape sequence. This means that we store these two characters in the
@cmd array and skip to characters after the quotation mark. Otherwise,
we simply store the character in the @cmd array and skip to the next
character. This process is repeated until either we consume all the
characters of the string or until we find a sole quotation mark. Since
we are not sure what has forced the loop to exit, we check whether
there are still characters in the input string and we check whether
this is a quotation mark. If these tests fail we have a string without
a closing quotation mark. In all cases we return a triplet consisting
of a number denoting success (1) or failure (0) and what we have
consumed from the input string, and what is left from the input
string.

<subroutine get string >= (<-U)
sub get string {

my $string = shift;

my $lc = shift;

$string =~ s/"\s+//;
if ($string !'~ s/™\"//) {
PrintErrorMessage("No starting \" found",$lc);
return (1,%$string,$string);
}
my @ch = split //,$string;
my @cmd;
while (@ch and $ch[0] ne "\"") {
if ($ch[0] eg "\\" and (defined $ch[1]) and $ch[1l] eq "\"") {
shift @ch;
push @md, $ch[0];
shift @ch;
}
else {
push @md, $ch[0];
shift @ch;
}
}
if (! defined $ch[0]) {
PrintErrorMessage("No closing \" found",$lc);
return (1,join("",@cmd), join("",@ch))

}
else {

shift @ch;

return (0, join("",@cmd), join("",@ch))
}

}

The definition as well as an explanation of the functionality of the
following subroutine can be found in "Programming Perl", 3rd edition.

<subroutine is tainted >= (<-U)
sub is tainted {
my $arg = shift;
my $nada = substr($arg,0,0);
local $@;

eval { eval "# $nada"};
return length($@) '= 0;
}

The subroutine noOfDigits has one argument which is a number and
returns the number of decimal digits it has. If the number matches the
regular expression ~\d+(?!\.) (a series of digits not followed by a
period), then the number of decimal digits is zero. If the number
matches the regular expression ~\d+\.(\d+)?, then number of decimal
digits equals length($1l). Naturally, it maybe zero!

<subroutine no0fDigits >= (<-U)
sub no0OfDigits {
my $num = $_[0O];

if ($num =~ /~[\+-12\d+(?!\.)/) {
return 0;

}
elsif ($num =~ /~[\+-]1\d+\.(\d+)?/) {
return length($1);
}
}

Subroutine drawsquare is use by the drawpoints routine to plot a point
whose point symbol is a square. The subroutine has one argument, which
is equal to the radius of the point. From this argument it computes
the side of the square.

<subroutine drawsquare >= (<-U)

sub drawsquare {
my $s = $_[0];
#$s *= sqrt(2);
$s = sprintf "%.5f", $s;
my $code = "\\setlength{\\unitlength}{$xunits}s\n";
$code .= "\\begin{picture}($s,%$s)\\put(0,0)" .

"{\\framebox($s,$s){}}\\end{picture}";

return $code;

Subroutine X2sp has two arguments: a number and a length unit. It
returns the length expresssed in sp units.

<subroutine X2sp >= (<-U)
sub X2sp {

my $LT = shift;

my $units = shift;

if ($units eq "pc") {
return $LT * 786432;

}

elsif ($units eq "pt") {
return $LT * 65536;

}

elsif ($units eq "in") {
return $LT * 4736286.72;

}

elsif ($units eq "bp") {
return $LT * 65781.76;

}

elsif ($units eq "cm") {

return $LT * 1864679.811023622;
}

elsif ($units eq "mm") {
return $LT * 186467.981102362;

}
elsif ($units eq "dd") {
return $LT * 70124.086430424;

elsif ($units eq "cc") {
return $LT * 841489.037165082;

}

elsif ($units eq "sp") {
return $LT;

}

}

Subroutine sp2X has two arguments: a number that denotes a length in
sp units and a length unit. It returns the length expresssed in units
that are specified by the second argument.

<subroutine sp2X >= (<-U)
sub sp2X {

my $LT = shift;

my $units = shift;

if ($units eq "pc") {
return $LT / 786432;
}

elsif ($units eq "pt") {
return $LT / 65536;

elsif ($units eq "in") {
return $LT / 4736286.72;
}

elsif ($units eq "bp") {
return $LT / 65781.76;

elsif ($units eq "cm") {
return $LT / 1864679.811023622;
}

elsif ($units eq "mm") {
return $LT / 186467.981102362;

}
elsif ($units eq "dd") {
return $LT / 70124.086430424;

elsif ($units eq "cc") {
return $LT / 841489.037165082;

}

elsif ($units eq "sp") {
return $LT;

}

}

Subroutine setlLineThickness takes two arguments: the value of the
variable $xunits and a string denoting the linethickness. It returns
the linthickness expressed in the units of the $xunits.

<subroutine setlLineThickness >= (<-U)
sub setLineThickness {

my $Xunits = shift;

my $LT = shift;

$Xunits =~ s/~ ((\+]|-)2\d+(\.\d+)?([eE] (\+]|-)?\d+)?)//;
my $xlength = "$1";

$Xunits =~ s/™\s*($units)//;

my $x in units = $1;

$LT =~ s/~ ((\+]-)?2\d+(\.\d+)?([eE] (\+]|-)?\d+)?)//;
my $LTlength = "$1";

$LT =~ s/™\s*($units)//;

my $LT in units = $1;

$LTlength = X2sp($LTlength,$LT in units);
$LTlength = sp2X($LTlength,$x in units);

return $LTlength;

The subroutine process input accepts one argument which is a file
handle that corresponds to the file that the subroutine is supposed to
process. The processing cycle is fairly simple: we input one line at
the time, remove any leading space characters and the trailing new
line character, and then start the actual processing. The variable
$INFILE contains the name of the input file and the variable $lc is
the local line counter. The commands beginSkip and endSkip can be used
to ignore blocks of code and so we need to process them here. The
variable $no output is used as a switch to toggle from process mode to
no-precess mode. If the first token is beginSkip, we set the variable
$no output to 1, print a comment to the output file and continue with
the next input line. If the first token is endSkip, we check whether
we are in a no-process mode. If this is the case, we revert to process
mode; otherwise we print an error message. Finally, depending on
whether we are in process or no-process mode we process the input text
or simply printed commented out to the output file. Note, that we
don't allow nested comment blocks, as this makes really no sense!

<subroutine process_input >= (<-U)
sub process input {
my ($INFILE,$currInFile) =@ ;
my $lc = 0;
my $no output 0,
$curr_in file = $currlnFile;
LINE: while(<$INFILE>) {
$lc++;
chomp ($command = $);
S/"\s+//;
if (/”beginSkip\s*/i) {
$no_output = 1;
print OUT "%%$ " if $comments on;
next LINE;
}
elsif (/7endSkip\s*/i) {
if ($no _output == 0) {
PrintErrorMessage("endSkip without beginSkip", $lc);
}
else {
$no output = 0;

print OUT "%%$ " if $comments on and !$no output;

next LINE;
}
elsif ($no output == 1) {

next LINE;
}
else {

if (/7[™\\1/) {

my $out line = mpp($command,$lc) unless /™\\/; #call macro pre-processor

$ = "$out line\n";
}
<process input line>
}
}

}

Each command line starts with a particular token and depending on
which one we have we perform different actions. If the first character
is % we have a comment line, and depending on the value of the
variable $comments on we either output the comment on the output file
(default action) or just ignore it and continue with the next input
line. In case the first token is the name of a valid command we
process the command and output the corresponding code. Otherwise, we
print an error message to the screen and to the log file and continue
with the next input line. Note that the input language is case-
insensitive and so one is free to write a command name using any
combination of upper and lower case letters, e.g., the tokens 1AtEx,
LaTeX, and latex are considered exactly the same. The valid MathsPIC
commands are the following (don't pay attention to the case!):

+ Commands drawAngleArc and drawAngleArrow are used to draw an arc
and an arrow, respectively. Since, their user interface is
identical, we process them as if they were identical commands.

 Command drawcircle is used to draw a circle with a specified
radius.

 Command drawCircumCircle is used to draw the circumcircle of
triangle specified by three points.

 Command drawexcircle is used to draw the excircle of triangle
relative to a given side of the triangle.

 Command drawincircle is used to draw the incircle of triangle.

« Command drawincurve is used to draw a curve that passes through a
number of points.

« Command drawline is used to draw either a line (not necessarily a
straight one) or a number of lines from a list or lists of
points. The lines are specified as pairs of points that can be
separated by blank spaces.

e Command drawthickline is used to draw either a thick line (not
necessarily a straight one) or a number of lines from a list or
lists of points. The lines are specified as pairs of points that
can be separated by blank spaces.

« Command drawPerpendicular draws a perpendicular line from point A
to line BC.

 Command drawpoint is used to draw one, two or more points. The
point names can be separated by blanks.

« Command drawRightAngle draws an angle, specified by three points,
of a size specified by a side length.

« Command drawsquare draws a square, centered at the coordinates of
the first arguments, which is assumed to be a point, with side
equal to the second argument.

 Command inputfile* is used to verbatim include a file into the
output file.

 Command inputfile is used to include a MathsPIC program file into
the main file.

« Command linethickness should be used to set the thickness of
lines.

 The paper command sets the paper scale, size, axes, etc. The most
general format of the command follows:

paper{units(mm), xrange(0,120), yrange(0,100),axes(LRTB)}

Note, that one may opt not to write the commas between the
different parts of command.

- Command point* allocates new co-ordinates and optionally a TX

point-name, to an existing point-name. Command point allocates
co-ordinates and, optionally a TgX point character, to a new

point-name. Since, both commands have identical syntax, we handle
them together.

» Command PointSymbol is used to set or reset the default point
symbol, i.e., when one plots a point this is the symbol that will
appear on the final DVI/PostScript file.

« In the original DOS version of mathspic the command
setPointNumber was used to set the length of the arrays that keep
the various point related information. Since, in Perl arrays are
dynamic objects and one can push as many objects as he/she wants,
the command is implemented as an no-op. For reasons of
compatibility, we only check the syntax of the command.

« Commands showAngle and showArea can be used to get the angle or
the area determined by three points. In addition, the command
showLenght can be used to get the length between two points.
These three commands produce a comment to the output file.

« The system command provides a shell escape.

« The text command is used to put a symbol/text at a particular
point location.

 Command var is used to store a numeric value into a comma
separated list of variables.

« Command const is used to store a numeric value into a comma
separated list of variables, whose value cannot be altered.

« If a line starts with a backslash, \, then we copy verbatim this
line to the output file. In case the second character is a space
character, then we simply output a copy of the line without the
leading backslash.

Empty lines are always ignored.

<process input line>= (<-U)

if (/"\s*%/)

{
print OUT "$ " if $comments on;

}

elsif (s/"™\s*(beginloop(?=\W))//i) {
s/\s+//;

my $times = expr($lc);
print OUT "%% BEGINLOOP $times\n" if $comments on;
my @C = ();
REPEATCOMMS: while (<$INFILE>) {
if (/"™\s*endloop/i) {
last REPEATCOMMS;
}
else {
push @C, $_;
}

}
if (! /"\s*endloop/i) {
PrintFatalError("unexpected end of file",$lc);
}
else {
s/™\s*endloop//1i;
for(my $i=1; $i<=$times; $i++) {
tie *DUMMY, 'DummyFH', \@C;
process input (DUMMY, $currInFile);
untie *DUMMY;

}
print OUT "%% ENDLOOP\n" if $comments on;
}
}
elsif (s/~\s*(ArrowShape(?=\W))//1i)
{
my $cmd = $1;

print OUT "%% cmd " if $comments on;
<process ArrowShape command>

}

elsif (s/™\s*(const(?=\W))//1i)

{
print OUT "%% 1 " if $comments on;
<process const command>

}
elsif (s/~\s*(dasharray(?=\W))//i)

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process dasharray command>

}
elsif (s/”\s*(drawAngleArc(?=\W))//i or s/~\s*(drawAngleArrow(?=\W))//i)
{

my $cmd = $1;

print OUT "%% cmd " if $comments on;

<process drawAngleArcOrArrow command>

}
elsif (s/"™\s*(drawArrow(?=\W))//1)
{

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
DrawLineOrArrow(0,$1c);

}
elsif (s/”™\s*(drawcircle(?=\W))//1i)
{
my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process drawcircle command>
}
elsif (s/”™\s*(drawcurve(?=\W))//1i)
{
my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
DrawLineOrArrow(2,%$1lc);
}
elsif (s/"™"\s*(drawcircumcircle(?=\W))//1i)
{
my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process drawcircumcircle command>
}

elsif (s/"™\s*(drawexcircle(?=\W))//1i)

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process drawexcircle command>

elsif (s/"™\s*(drawincircle(?=\W))//1i)

{
my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process drawincircle command>
}
elsif (s/™\s*(drawline(?=\W))//1)
{
my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
DrawLineOrArrow(1,$1lc);
}
elsif (s/~™\s*(drawthickarrow(?=\W))//1i)
{
my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
print OUT "\\setplotsymbol ({\\usefont{OT1l}{cmr}{m}{n}\\large .})%\n";
print OUT "{\\setboxl=\\hbox{\\usefont{0OT1}{cmr}{m}{n}\\large .}%\n";
print OUT " \\global\\linethickness=0.31\\wd1l}%\n";
DrawLineOrArrow(0,$1c);
print OUT "\\setlength{\\linethickness}{0.4pt}%\n";
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n";
}
elsif (s/”™\s*(drawthickline(?=\W))//1i)
{

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\large .})%\n";
print OUT "{\\setboxl=\\hbox{\\usefont{0T1}{cmr}{m}{n}\\large .}%\n";
print OUT " \\global\\linethickness=0.31\\wd1l}%\n";
DrawLineOrArrow(1l,$1lc);
print OUT "\\setlength{\\linethickness}{0.4pt}%\n";
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n";
}
elsif (s/”™\s*(drawperpendicular(?=\W))//i)

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process drawPerpendicular command>

}
elsif (s/~\s*(drawpoint(?=\W))//i)

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process drawpoint command>

}

elsif (s/~\s*(drawRightAngle(?=\W))//i)

{

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process drawRightAngle command>

}

elsif (s/"™\s*(drawsquare(?=\W))//1i)

{
my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process drawsquare command>

}
elsif (s/™\s*inputfile*//1i)
{

<process inputfile* command>

}
elsif (s/~\s*(inputfile(?=\W))//i)

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process inputfile command>

}
elsif (s/™\s*(linethickness(?=\W))//1i)

{
my $cmd = $1;
print OUT "%% cmd " if $comments on;
<process linethickness command>

}

elsif (s/~\s*(paper(?=\W))//i)

my ($cmd) = $1;
print OUT "%% cmd " if $comments on;
<process paper command>
}
elsif (s/~\s*(PointSymbol(?=\W))//1i)
{
my $cmd = $1;
print OUT "%% cmd " if $comments on;
<process PointSymbol command>

}
elsif (s/"\s*point(?=\W)//1i)
{
my ($Point Line);
chomp ($Point Line=$);
<process point/point* commands>

}
elsif (/™\s*setPointNumber (?=\W)/1i)

t PrintWarningMessage("Command setPointNumber is ignored",$lc);
next LINE;

élsif (s/™\s*(showAngle(?=\W))//1i)

! <process showAngle command>

glsif (s/~\s*(showArea(?=\W))//1i)

{ <process showArea command>

%151f (s/~\s*(showLength(?=\W))//i)

<process showlength command>

}
elsif (/”\s*showPoints(?=\W)/1i)

{
Print OUT M%%-- - - - mm i o e oo \n";
print OUT "%% LIST OF POINTS \n";
Print OUT M%%-- - - - o e o i e e e e \n";
foreach my $p (keys(%PointTable)) {
my ($x, $y, $pSV, $pS) = unpack("d3A*",$PointTable{$p});
printf OUT "%%%%\t%s\t= (%.5f, %.5f), LF-radius = %.5f, symbol = %s\n",
) $p, $x, $y, $pSV, $pS;
Print OUT M%%---- - - s m s m i m oo e e \n";
print OUT "%% END OF LIST OF POINTS \n";
Print OUT M%%---- - - mm o mm i m o m e e a s \n";
next LINE;
}
elsif (/™\s*showVariables(?=\W)/i)
{
Print OUT M%%- - - - mmm i oo oo \n";
print OUT "%% LIST OF VARIABLES \n";
Print OUT M%%- - - - o mmm oo oo oo \n";

foreach my $var (keys(%VarTable)) {
print OUT "%%\t", $var, "\t=\t", $VarTable{$var}, "\n";
}
Print OUT M%%-- - - - s m e e e o e e oo \n";
print OUT "% END OF LIST OF VARIABLES \n";

Print OUT %% - - - - - mmm e o e e \n";
next LINE;

}

elsif (s/"™\s*(system(?=\W))//i)

{
print OUT "%% 1 " if $comments on;
<process system command>

}
elsif (s/”™\s*(text(?=\W))//1i)
{
print OUT "%% 1 " if $comments on;
<process text command>
}
elsif (s/”\s*(var(?=\W))//1i)
{
print OUT "%% 1 " if $comments on;
<process var command>
}
elsif (/7™\s*\\(.+)/)
{
my $line = $1;
if ($line =~ /"™\s+(.+)/)
{

}

else

{

}
next LINE;

print OUT " $line\n";
print OUT "\\$line\n";

}
elsif (0==length) #empty line
{

next LINE;

}

else {
PrintErrorMessage("command not recognized", $lc);
next LINE;

}

Command dasharray takes an arbitrary number of arguments that are used
to specify a dash pattern. Its general syntax follows:

Ildasharrayll II(II dl II,II gl II'II d2 II'II gz II’II . II)II
where d; denotes the length of a dash and g; denotes the length of gap
between two consecutive dashes. Each d; and g; is a length (i.e., a

number accompanied by a length of unit). Since we do not a priori know
the number of arguments, we push them onto a stack and then we produce
a command of the form

\setdashpattern < d;, g4, d,, 95, ...>

<process dasharray command>= (<-U)
chk lparen($cmd, $lc);
my @DashArray = ();
my $dash = "";
my $dashpattern = "";
PATTERN: while (1) {
$dash = sprintf("%.5f", expr($lc));
if (s/™\s*($units)//i) {
push (@DashArray, "$dash$l");
}

else {
PrintErrorMessage("Did not found unit after expression", $1lc);

}

s/\s*//;

if (/7[7,17) A
last PATTERN;

}

else {
s/™,\s*//;

}

}
print OUT "\\setdashpattern <";
while (@DashArray) {
$dashpattern .= shift @DashArray;
$dashpattern .= ",";
}
$dashpattern =~ s/,%$//;
print OUT $dashpattern, ">\n";
chk _rparen("arguments of $cmd",$lc);
chk_comment($1lc);

The command drawAngleArc draws an arc in the specified angle, a
distance radius from the angle. The angle is either internal (<= 180
degrees) or external (>180 degrees). The direction of the arc is
either clockwise or anticlockwise. The command drawAngleArrow draws an
arrow just like the command drawAngleArc draws an arc. The syntax of
these commands is as follows:

cmds = ("drawAngleArc" | "drawAngleArrow") args

args = "{" angle comma radius comma internal comma clockwise "}"
angle = "angle" "(" three-points ")"

radius = "radius" "(" distance ")"

distance = expression

internal = "internal" | "external"

clockwise ::= "clockwise" | "anticlockwise"

comma = "," | empty

We first collect all relevant information by parsing the args and then
call the either the subroutine drawAngleArc or the subroutine
drawAngleArrow to produce the actual code which is then printed into
the output file. In order to be able to distinguish which command we
are dealing with we simply use the variable $cmd. We now start parsing
the input line. We first check whether there is a left curly bracket.
Next, we parse the angle, the distance, the internal and the clockwise
parts of the command. Finally, we check for right curly bracket and a
trailing comment. Depending on the value of the variable $cmd we call
either the subroutine drawAngleArc or the subroutine drawAngleArrow.
These subroutines return the code that will be finally output to the
output file.

<process drawAngleArcOrArrow command>= (<-U)

chk lcb($cmd, $1c);

<process angle part of command>

s/™,\s*// or s/\s*//; #parse optional comma
<process radius part of command>

s/™,\s*// or s/\s*//; #parse optional comma

my $inout = "";

if (s/”(internal(?=\W))//1i or s/"(external(?=\W))//1i) {
$inout = $1;

}

else {

PrintErrorMessage("Did not find expected 'internal' specifier", $lc);

next LINE;

}

s/~,\s*// or s/\s*//; #parse optional comma

my $direction = "";

if (s/~(clockwise(?=\W))//i or s/"(anticlockwise(?=\W))//i) {
$direction = $1;

}

else {
PrintErrorMessage("Did not find expected 'direction' specifier", $lc);
next LINE;

}
chk _rcb("arguments of $cmd",$lc);
chk comment($lc);
my $code;
if (lc($cmd) eq "drawanglearc") {
$code = drawAngleArc($P1l, $P2, $P3, $radius, $inout, $direction);
}

else {
$code = drawAngleArrow($P1, $P2, $P3, $radius, $inout, $direction);

}
print OUT $code if $code ne ;

We first check whether the first token is the word angle. In case it
isn't, this yields an unrecoverable error. In case the expected word
is there, we check for a left parenthesis. Next, we parse the three
points that must follow. For this purpose we use the user-defined
subroutine get point. Now we check that the angle has a reasonable
value, i.e., if it is less than -400 or equal to zero, the value
yields an unrecoverable error. We finish by checking whether there is
a right parenthesis.

<process angle part of command>= (<-U)

my ($P1, $P2, $P3);

if (s/”angle(?=\W)//i) {
chk lparen("token angle of command $cmd",$lc);
$P1 = get point($lc);
next LINE if $P1 eq " undef ";
$P2 = get point($lc);
next LINE if $P2 eq " undef ";
$P3 = get point($lc);
next LINE if $P3 eq " undef ";
my ($x1,%$yl,$pSV1,$pS1l)=unpack("d3A*",$PointTable{$P1});
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$P2});
my ($x3,%y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$P3});
my $Angle = Angle($x1l, $yl, $x2, $y2, $x3, $y3);
if ($Angle <= 0) {

if ($Angle == 0) {
PrintErrorMessage("Angle is equal to zero",$lc);
next LINE;

}

elsif ($Angle < -400) {
PrintErrorMessage("Something is wrong with the points",$1lc);

next LINE;
}
}
chk rparen("angle part of command $cmd",$lc);
}
else {
PrintErrorMessage("Did not find expected angle part",$lc);
next LINE;

}

In this section we parse the radius part of the drawAngleArc or the
drawAngleArrow command. We first check whether the next token is the
word radius. If it is not, then we continue with the next line.

<process radius part of command>= (<-U)

my $radius;

if (s/~radius(?=\W)//1i) {
chk lparen("token radius of command $cmd",$lc);
$radius = expr($lc);
chk _rparen("radius part of command $cmd",$lc);

}

else {
PrintErrorMessage("Did not found expected angle part",$lc);
next LINE;

}

Command drawcircle accepts two arguments--a point name that is used to
specify the center of the circle and the radius of the circle. The
radius is simply an expression, whose value must be greater than zero.
Otherwise, we print an error message and continue with the next input
line. The general syntax of the command is as follows:

"drawcircle" "(" point-name "," rad ")"

The code we emit for a point with coordinates x and y and for radius
equal to R is:

\circulararc 360 degrees from X y center at x y
where X = x+R.

Initially, we check whether there is an opening left parenthesis.
Next, we get the point name by using the subroutine get point which
issues an error message if the point hasn't been defined. In this case
we stop processing the command, as there is absolutely no reason to do
otherwise. Next, we parse the comma and then the radius by using the
subroutine ComputeDist. If there is no problem, we emit the code and
finally we check for a closing right parenthesis and for possible
garbage that may follow the command.

<process drawcircle command>= (<-U)

chk 1lparen("drawcircle",$lc);

my $Point = get point($lc);

next LINE if $Point eq " undef ";

chk _comma($1lc);

my $R = expr($lc);

if ($R <= 0) {
PrintErrorMessage("Radius must be greater than zero",$lc);
next LINE;

}

my ($x,$y,$pSV, $pS)=unpack("d3A*",$PointTable{lc

printf OUT "\\circulararc 360 degrees from %.5f
$x+$R, 3y, $x, $y;

chk _rparen("arguments of $cmd",$lc);

chk comment($lc);

($Point)});
%.5f center at %.5f %.5f\n",

Command drawcircumcircle is used to draw the circumcircle of triangle
specified by three points which are the arguments of the command. We

start by parsing the opening left parenthesis. Next, we get the three
points that define the triangle. We are now able to compute the center
and the radius of the circumcircle by calling the subroutine
circumCircleCenter. If the triangle area is equal to zero, then this
subroutine will return the array (0,0,0) to indicate this fact. We now
have all necessary information to draw the circumcircle. We use the
following code to do the job:

\circulararc 360 degrees from X y center x y

where x and y are the coordinates of the center, R its radius and
X=x+R. What is left is to check whether there is a closing right
parenthesis and any trailing garbage.

<process drawcircumcircle command>= (<-U)
chk lparen("drawcircumcircle", $lc);
my $pointl = get point($lc);
next LINE if $pointl eq " undef ";
my $point2 = get point($lc);
next LINE if $point2 eq " undef ";
my $point3 = get point($lc);
next LINE if $point3 eq " undef ";
my ($x1,$yl,$pSV1, $pS1l)=unpack("d3A*",$PointTable{$pointl});
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3});
my ($xc, $yc,$r) = circumCircleCenter($x1,$yl, $x2,%$y2,$x3,%$y3,%$lc);
next LINE if $xc == 0 and $yc == 0 and $r == 0;
print OUT "%% circumcircle center = ($xc,$yc), radius = $r\n" if $comments on;
printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n",
$xc+$r, yc, sxc, $yc;
chk rparen("arguments of $cmd",$lc);
chk_comment($1lc);

The syntax of the drawexcircle command is as follows:

drawexcircle ::= "drawexcircle" "(" ThreePoints "," TwoPoints ")"
[modifier]
mOdlfler‘ = "[" expr- II]||

The modifier is an expression that is used to modify the radius of the
excicle. We start by checking whether there is a left parenthesis.
Then we get names of the three points. In case any of the points is
not defined we issue an error message and continue with the next input
line. Next, we check whether there is a comma that separates the three
points defining the triangle from the two points defining a side of
the triangle (variables $pointl, $point2, and $point3). Moreover, we
must ensure that the area of the area defined by these points is not
equal to zero. If it is we issue an error message and we continue with
the next input line. Now, we are ready to get the two point names that
define the side of the triangle (variables $point3 and $point5). At
this point we must make sure that these points are different points
and that they are members of the list of points that define the
triangle. We make this check by calling the subroutine memberOf. Next,
we check whether there is a closing right parenthesis. We now compute
the center and the radius of the excircle by calling the subroutine
excircle. The coordinates of the center are stored in the variables
$xc and $yc, while the radius is stored in the variable $r. If the
next non-blank input character is a left square bracket, then we know

the user has specified

the optional part. We use the subroutine expr

to get the value of the optional part. The value of the optional part
is stored in the variable $R. At this point we check whether the sum

of the radius plus the
continue with the next
square bracket. We are
thing we must check 1is
i.e., not greater than
to the output file and
code to do the job:

optional part is equal to zero and if it is we
input line. Next, we check for a closing right
now ready to emit the source code. The first
that the radius is not too big for PiCTeX,
500/2.845. Then we print some informative text
of course the actual code. We use the following

\circulararc 360 degrees from (xc+R) yc center xc yc

The last thing we check is whether there is some trailing garbage.

<process drawexcircle command>= (<-U)

chk lparen("drawexcircle",$lc);

my $pointl = get point($lc);

next LINE if $pointl eq " undef ";
my $point2 = get point($lc);

next LINE if $point2 eq " undef ";
my $point3 = get point($lc);

next LINE if $point3 eq " undef ";

my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$pointl});
my ($x2,$y2,%$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3});
if (triangleArea($x1, $yl, $x2, $y2, $x3, $y3) < 0.0001) {
PrintErrorMessage("Area of triangle is zero!",$lc);
next LINE;

chk _comma($lc);

my $point4 = get point($lc);

if ('member0f($pointd, $pointl, $point2, $point3)) {
PrintErrorMessage("Current point isn't a side point",$lc);
next LINE;

}

next LINE if $point4 eq " undef ";

my $point5 = get point($lc);

next LINE if $point5 eq " undef ";

if (!memberOf($point5, $pointl, $point2, $point3)) {
PrintErrorMessage("Current point isn't a side point",$lc);
next LINE;

}

if ($point4 eq $point5) {
PrintErrorMessage("Side points are identical",$lc);
next LINE;

chk rparen("arguments of $cmd",$lc);
my ($xc, $yc, $r) = excircle($pointl, $point2, $point3,
$point4, $pointh);
my $R=$r;
if (s/”™\s*\[\s*//) {
$R += expr($lc);
if ($R < 0.0001) {
PrintErrorMessage("Radius has become equal to zero!",$1lc);
next LINE;

}
chk _rsb($lc);

}

if ($R > (5600 / 2.845)) {
PrintErrorMessage("Radius is greater than 175mm!",$1lc);
next LINE;

}

print OUT "%% excircle center = ($xc,$yc) radius = $R\n" if $comments_on;

printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n",
$XC+$R, $yc, $xc, $yc;
chk_comment ($1c);

The syntax of the drawincircle command is as follows:

drawincircle ::= "drawincircle" "(" ThreePoints ")" [modifier]
mOdlfler . "[" expr ll]u

where ThreePoints correspond to the points defining the triangle and
modifier is an optional modification factor. The first thing we do is
to check whether there is an opening left parenthesis. Then we get the
names of the three points that define the triangle (variables $pointl,
$point2, and $point3). Next, we make sure that the area of the
triangle defined by these three points is not equal to zero. If it is,
then we issue an error message and continue with the next input line.
Now, we compute the center and the radius of the incircle (variables
$xc, $yc, and $r). If the next non-blank input character is a left
square bracket, then we now the user has specified the optional part.
We use subroutine expr to get the value of the optional part. The
value of the optional part is stored in the variable $R. At this point
we check whether the sum of the radius plus the optional part is equal
to zero and if it is we continue with the next input line. Next, we
check for a closing right square bracket. We are now ready to emit the
source code. The first thing we must check is that the radius is not
too big for PiCTeX, i.e., not greater than 500/2.845. Then we print
some informative text to the output file and of course the actual
code. We use the following code to do the job:

\circulararc 360 degrees from (xc+R) yc center xc yc
The last thing we check is whether there is some trailing garbage.

<process drawincircle command>= (<-U)
chk lparen("drawincircle",$lc);
my $pointl = get point($lc);
next LINE if $pointl eq " undef ";
my $point2 = get point($lc);
next LINE if $point2 eq " undef ";
my $point3 = get point($lc);
next LINE if $point3 eq " undef ";
my ($x1,%$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$pointl});
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2});
my ($x3,$y3,$pSV3, $pS3)=unpack("d3A*",$PointTable{$point3});
if (triangleArea($x1, $yl, $x2, $y2, $x3, $y3) < 0.0001) {
PrintErrorMessage("Area of triangle is zero!",$lc);
next LINE;
}
my ($xc, $yc, $r) = IncircleCenter($x1,$yl,$x2,%$y2,%$x3,%$y3);
my $R=$r;
if (s/™\s*\[\s*//) {
$R += expr($lc);
if ($R < 0.0001) {
PrintErrorMessage("Radius has become equal to zero!",$1lc);
next LINE;

}
chk rsb($lc);

}
if ($R > (5600 / 2.845)) {
PrintErrorMessage("Radius is greater than 175mm!",$lc);

next LINE;
}

print OUT "%% incircle center = ($xc,$yc) radius = $R\n" if $comments on;

printf OUT "\\circulararc 360 degrees from %.5f %.5f center at %.5f %.5f\n",
$xc+3$R, yc, sxc, $yc;

chk rparen("arguments of $cmd",$lc);

chk_comment ($1c);

The command drawPerpendicular command draws a line from point A to
line BC, such that it is perpendicular to line BC. The general syntax
of the command is as follows:

drawPenpedicular ::= "drawPenpedicular" "(" Point "," TwoPoints ")"

The first thing we do is to parse the left parenthesis. Then we parse
the name of the first point, namely A. If this point is undefined we
print an error message and continue with the next line. Next, we parse
the expected leading comma and the names of the other two points.
Certainly, in case either of these two points has not been defined, we
simply print an error message and continue with the next input line.
Finally, we check for a closing right parenthesis and a possible
trailing comment. Now we are ready to compute the coordinates of the
foot of the perpendicular line. We do so my calling subroutine
perpendicular. Certainly, before we do this we have to get the
coordinates of the points that we have parsed. Finally, we output the
PiCTeX code:

\plot x1 yl xF xY /

where x1 and yl are coordinates of the point A and xF and yF the
coordinates of the foot.

<process drawPerpendicular command>= (<-U)

chk lparen($cmd, $lc);
my $A = get point($lc);
next LINE if $A eq " undef ";
chk _comma($1lc);
my $B = get point($lc);
next LINE if $A eq " undef ";
s/\s*//; #ignore white space
my $C = get point($lc);
next LINE if $A eq " undef ";
chk _rparen("arguments of $cmd",$lc);
chk _comment($1lc);
#
#start actual computation
#
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$A});
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$B});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$C});
my ($xF, $yF) = perpendicular($xl, $yl, $x2, $y2, $x3, $y3);
printf OUT "\\plot %.5f %.5f %.5f %.5f /\n",
$x1, $yl, $xF, $yF;

The drawpoint command has a number of points as arguments and produces
PiCTeX code that draws a plot symbol at the coordinates of each point.
The syntax of the command is as follows:

drawpoint ::= "drawpoint" " (" Point { separator Point } ")"

The while loop is used to consume all points that are between an
opening left parenthesis and a closing right parenthesis. All points
are pushed on the local array PP. When we have parsed the lists of
points, we call the subroutine drawpoints to emit the actual PiCTeX
code. Finally, we check whether there is a closing parenthesis
parenthesis, and whether there is some trailing text that makes no
sense. In case there are no points between the parentheses, then we
issue an appropriate error message and we continue with the next input
line.

<process drawpoint command>= (<-U)
my ($stacklen);
chk 1lparen("$cmd",$lc);
if (/2\)/) A
PrintErrorMessage("There are no point to draw",$lc);
next LINE;
}
my (@PP) ;
DRAWPOINTS:while(1) {
if (s/~([™\W\d 1\d{0,4})//1i) { #point name
$P = $1;
if (lexists($PointTable{lc($P)})) {
PrintErrorMessage("Undefined point $P",$lc);
next DRAWPOINTS;
}
else {
push (@PP,$P);
s/\s*//;
}
}

else {
last DRAWPOINTS;
}

}
drawpoints (@PP);

chk_rparen(“arguments of $cmd",$lc);
chk _comment($lc);

The syntax of the drawRightAngle command is as follows:

drawRightAngle "(" ThreePoints "," dist ")"
dist ::= expr | TwoPoints

Before we proceed with the actual computation we parse the left
parenthesis, the three points, the comma, the dist, and the right
parenthesis. In case we have neither three points nor a dist we print
an error message and continue with the next input line, i.e., these
errors are irrecoverable. The names of the three points are stored in
variables $pointl, $point2, and $point3. The value of the distance is
stored in the variable $dist. Let's now explain the semantics of this
command.

Our aim is to draw lines S;-S, S5,-S (S; and S, are at distance d from
B). ALl the relevant points are depicted in the following figure:

[

Some notes are in order:

1. BS bisects angle ABC, and meets AC in Q, so start by determining
point Q, then determine S, and then S; and S,, and then draw S-S

and SZ-S.

2. Distance AQ is given by AC/(1l+tan(BCA))

3. The coordinates of Q are computed using the subroutine
pointOnLine.

4. Now we compute the coordinates of S on line BQ.

5. We compute the coordinates of S; and S, by using The subroutine

pointOnLine.

In order to implement the above steps we first compute the length of
the line AB. Note that A is $pointl, etc. Next we compute the angle
BAC. Now we compute the distance AQ (variable $linel). The coordinates
of point Q are stored in variables $xQ and $yQ. The coordinates of
point S are stored in variables $xS and $yS. Now we have to determine
the coordinates of points S; and S,. These coordinates are stored in

variables $xS1, $yS1 and $xS2, $yS2, respectively. Finally, we emit
the PiCTeX target code.

<process drawRightAngle command>= (<-U)

chk _1lparen("drawRightAngle",$1lc);

my $pointl = get point($lc);

next LINE if $pointl eq " undef ";

my $point2 = get point($lc);

next LINE if $point2 eq " undef ";

my $point3 = get point($lc);

next LINE if $point3 eq " undef ";

my ($x1,$yl,$pSV1, $pSl)=unpack("d3A*",$PointTable{$pointl});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point2});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point3});
chk comma($lc);

my $dist = expr($lc);

chk rparen("arguments of $cmd",$lc);

chk_comment ($1c);

#
#actual computation
#
my ($Px, $Py) = pointOnLine($x2, $y2, $x1, $yl, $dist);
my ($Qx, $Qy) = pointOnLine($x2, $y2, $x3, $y3, $dist);
my ($Tx, $Ty) = midpoint($Px, $Py, $Qx, $Qy);
my ($Ux, $Uy) = pointOnLine($x2, $y2, $Tx, $Ty, 2*Length($x2, $y2, $Tx, $Ty));
if ($Px == $Ux || $Py == $Uy) {
printf OUT "\\putrule from %.5f %.5f to %.5f %.5f \n", $Px,$Py, $Ux, $Uy;
}
else {

printf OUT "\\plot %.5f %.5f\t%.5f

of
o®

.5f / \n", $Px, $Py,3$Ux,$Uy;

}
if ($Ux == $Qx || $Uy == 3$Qy) {
printf OUT "\\putrule from %.5f
}
else {
printf OUT "\\plot %.5f %.5f\t%.5f

}

o°

.5f to %.5f %.5f \n", $Ux, $Uy, $Qx, $Qy;

o°

5f / \n", $Ux, $Uy,$Qx, $Qy;

The command drawsquare has two arguments: a point, which specifies the
coordinates of the point where the square will be placed, and a
number, which specifies the length of the side of the square. The
syntax of the command is as follows:

"drawSquare" " (" Point "," expression ")"
Note that RWDN has suggested to alter the value of the $side variable
(see the line with RWDN comment).

<process drawsquare command>= (<-U)
chk lparen("drawSquare",$lc);
my $p = get point($lc);
chk _comma($lc);
my $side = expr($lc);
$side = $side - (1.1 * $LineThickness/$xunits); #Suggested by RWDN
my ($x,$y,$pSV,$pS) = unpack("d3A*",$PointTable{$p});
printf OUT "\\put {%s} at %.5f %.5f %%drawsquare\n", drawsquare($side), $x, $y;
chk _rparen("arguments of $cmd",$lc);
chk_comment($1lc);

The argument of the inputfile* command is a file name that is always
enclosed in parentheses:

starred-input-file ::= "inputfile*" "(" file-name ")"
file-name ::= (alpha | period) { alpha | period }
alpha ::= letter | digit | " " | "-"

Note, that the input file is assumed to contain TeX code. We first
check to see if there is a left parenthesis. Then we consume the file
name. We check if the file exists and then we copy verbatim the input
file to the output file. Next, we check for the closing parenthesis.
Now, if there is a trailing comment we copy it to the output file
depending on the value of the variable $comments on, else if there 1is
some other text we simply ignore it and issue a warning message.

<process inputfile* command>= (<-U)

chk lparen("inputfile*",$lc);

my $row _in = "";

if (s/7((\w[-|\.)+)/7) |
$row in = $1;

}

else {
PrintErrorMessage("No input file name found",$lc);
next LINE;

if (!'(-e $row in)) {
PrintErrorMessage("File $row in does not exist",$lc);
next LINE;

open(ROW, "$row in")|| die "Can't open file $row in\n";
while (defined($in line=<ROW>)) { print OUT $in line; }
print OUT "%% ... end of input file <$row in>\n";

close ROW;

chk _rparen("input file name",$1lc);

chk_comment ($1lc);

The inputfile command has at most two arguments, second being
optional: a file name enclosed in curly brackets and the number of
times this file should be included in square brackets:

inputfile ::= "inputfile" "(" file-name ")" [Times]
Times ::= "[" expr "]"

Note that the input file is assumed to contain mathspic commands. In

addition, if the expression is equal to a decimal number, it is
truncated. As in the case of the inputfile* command we parse the left
parenthesis, the file name, the right parenthesis and the optional
argument if it exists. In order to process the commands contained in
the input file, we call The subroutine process input.

<process inputfile command>= (<-U)

chk lparen("inputfile",$lc);

my $comm in = "";

if (s/7((\w|-|\)+)//) {
$comm in = $1;

}

else {
PrintErrorMessage("No input file name found",$lc);
next LINE;

if (!'(-e $comm _in)) {
PrintErrorMessage("File $comm_in does not exist",$lc);
next LINE;

chk _rparen("input file name",$1lc);
my $input times = 1; #default value
if (s/™\[//) A{
$input _times = expr($lc);
chk rsb("optional argument",$lc);
}
print OUT "%% ... start of file <$comm in> loop [$input times]\n";
for (my $i=0; $i<int($input times); $i++) {
open(COMM, "$comm_in") or die "Can't open file $comm in\n";
print OUT "%%% Iteration number: ",$i+1,"\n";
my $old file name = $curr_in file;
process input(COMM,"File $comm in, ");
$curr_in file = $old file name;
close COMM;
}
print OUT "%% ... end of file <$comm in> loop [$input times]\n";
chk comment($lc);

The linethickness command should be used to set the thickness of
lines. The command has one argument, which is a length or the word
default. The default line thickness is 0.4 pt.

<process linethickness command>= (<-U)
chk 1lparen("linethickness", $lc);
if (s/"~default//i) {
print OUT "\\linethickness=0.4pt\\Linethickness{0.4pt}%%\n";
print OUT "\\setplotsymbol ({\\usefont{OT1}{cmr}{m}{n}\\tiny .})%\n";
$LineThickness = setLineThickness($xunits,"0.4pt");
}
else {
my $length = expr($lc)
if (s/™\s*($units)//i) {
my $units = $1;
printf OUT "\\linethickness=%.5f%s\\Linethickness{%.5f%s}%%\n",
$length, $units, $length, $units;
$LineThickness = setLineThickness($xunits,"$length$units");
my $mag;
if ($units eq "pc") {
$mag = $length * 12;

~=

elsif ($units eq "in") {
$mag = $length * 72.27;
}

elsif ($units eq
$mag = $length

elsif ($units eq
$mag = $length

elsif ($units eq
$mag = $length

elsif ($units eq
$mag = $length

elsif ($units eq
$mag = $length

elsif ($units eq
$mag = $length

elsif ($units eq

||bp||) {
* 1.00375;

||cm||) {
* 28.45275;

Ilmmll) {
* 2.845275;

uddu) {
*1.07001;

"CC") {
* 0.08917;

"Sp") {
* 0.000015259;

llptll) {

$mag = $length;
}
$mag = 10 * $mag / 1.00278219;

printf OUT "\\font\\CM=cmrl0 at %.5fpt%%\n", $mag;
)%\n"

print OUT "\\setplotsymbol ({\\CM .})%\n";
}
else {

PrintErrorMessage("Did not found expect units part",$lc);
}

}

chk rparen("linethickness", $1lc);
chk _comment($lc);

We first output the input line as a comment into the output file. Now,
after the paper token we look for an opening brace. Then we process
the units part of the command, if the token units is present. Note
that the units part is optional. Next we process the xrange and the
yrange part of the command, which are also optional parts of the
command. We are now ready to process the axis part. Note, that the
user is allowed to alternatively specify this part with the word axes.
The variable $axis is supposed to hold the various data relate to the
axis part. The last thing we check is the ticks part. In case the user
has not specified this part we assume that both ticks are equal to
zero. If everything is according to the language syntax, we expect a
closing right curly bracket. Now, that we have all relevant
information we can output the rest of the code, as some parts of it
have already been output during parsing. The last thing we do is to
check whether there is any trailing comment.

<process paper command>= (<-U)
chk lcb("paper", $lc);
if (s/~units(?=\W)//1i)

{
<process unit part>
$nounits = 0;

}

else

{
$nounits = 1;

}

s/~,\s*// or s/\s*//;
if (s/”xrange//1i)

{

<process xrange part>
$noxrange = 0;
}

else

{

$noxrange = 1;

}

s/~ ,\s*// or s/\s*//;

if (s/”~yrange//i)

{
<process yrange part>
$noyrange = 0;

}

else

{

$noyrange = 1;

<generate plot area related commands>
s/~ ,\s*// or s/\s*//;
$aXiS = uu;
if (s/7ax[ei]s(?=\W)//1i)
{

<process axis part>
}
$axis = uc($axis);
s/~ ,\s*// or s/\s*//;
if (s/"ticks(?=\W)//1)
{

<process ticks part>
}

else

{
$xticks = $yticks = 0;
}

chk_rcb("paper", $lc);
<generate the rest of the code for the paper command>
chk_comment($1lc);

We first check whether there is a left parenthesis. Next, we check
whether there is decimal number or a variable name. In case there
isn't one we assume it is the number 1. Now, we get the units. If
there is no valid unit, we issue an error and the x-unit is set to its
default value. In case, there is a trailing comma, we assume the user
wants also to specify the y-unit and we process this part just like we
did with the x-unit part. Finally, we output the corresponding PiCTeX
command. In case there is no y-unit we assume it is equal to the x-
unit.

<process unit part>= (<-U)

chk lparen("units",$lc);

if(s/™\)//)

{
PrintWarningMessage("Missing value in \"units\"--default is 1pt",

$lc);

$xunits = "1pt";

}

else {
$xunits = expr($lc);
s/\s*//;
if (s/”($units)//1i) |

$xunits .= "$1";

$LineThickness = setlLineThickness($xunits,"0.4pt");

}
elsif(s/~(\w)+//1i) {
PrintErrorMessage("$1 is not a valid mathspic unit",$1lc);
$xunits = "1pt";
}
else {
PrintErrorMessage("No x-units found",$lc);
$xunits = "lpt";

s/\s*//; #ignore white space
if (s/~,//) { # there is a comma so expect an y-units
s/\s*//; #ignore white space
$yunits = expr($lc);
s/\s*//; #ignore white space
if (s/~($units)//i) {
$yunits .= "$1";

}
elsif(s/~(\w)+//1) {
PrintErrorMessage("$1 is not a valid mathspic unit",$lc);
$yunits = "1pt";
}
else {
PrintErrorMessage("No y-units found",$lc);
$yunits = $xunits;

}
}
else {
$yunits = $xunits;
}
chk rparen("units",$lc);

The xrange token must be followed by a left parenthesis, so we check
whether the next token is a left parenthesis. We store in the
variables $xlow and $xhigh the values of the range. The range is
specified as pair of decimal numbers/variable/pair of points,
separated by a comma. We use the subroutine ComputeDist to get the
value of the lower end and the upper end of the range. The last thing
we check is whether the lower end is less than the upper end. If this
isn't the case we issue an error message and we skip into the next
input line.

<process xrange part>= (<-U)

chk 1lparen("xrange",$lc);
my $ec;
($xLlow, $ec) = ComputeDist($lc);
next LINE if $ec == 0;
chk comma($lc);
($xhigh,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
if ($xlow >= $xhigh)
{
PrintErrorMessage("xlow >= xhigh in xrange",$lc);
next LINE;

}
chk_rparen("$xhigh", $lc);

The yrange token must be followed by a left parenthesis, so we check
whether the next token is a left parenthesis. We store in the
variables $ylow and $yhigh the values of the range. The range 1is
specified as pair of decimal numbers/variable/pair of points,

separated by a comma. We use the subroutine ComputeDist to get the
value of the lower end and the upper end of the range. The last thing
we check is whether the lower end is less than the upper end. If this
isn't the case we issue an error message and we skip into the next
input line.

<process yrange part>= (<-U)

chk lparen("yrange", $lc);
my $ec;
($ylow, $ec) = ComputeDist($lc);
next LINE if $ec == 0;
chk _comma($lc);
($yhigh,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
if ($ylow >= $yhigh)
{
PrintErrorMessage("ylow >= yhigh in yrange",$1lc);
next LINE;

}
chk_rparen("$yhigh",$lc);

The showAngle command has three arguments that correspond to three
distinct points and emits a comment of the form:

%% angle(ABC) = 45
Note that the computed angle is expressed in degrees.

<process showAngle command>= (<-U)

chk lparen("showangle",$lc);

my $point 1 = get point($lc);

my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*", $PointTable{$point 1});

my $point 2 = get point($lc);

my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point 2});

my $point 3 = get point($lc);

my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point 3});

my $angle = Angle($x1l, $yl, $x2, $y2, $x3, $y3);

$angle = 0 if $angle == -500;

printf OUT "%%%% angle(%s%s%s) = %.5f deg (%.5f rad)\n", $point 1,
$point 2, $point 3, $angle, $angle*D2R;

chk _rparen("Missing right parenthesis", $1lc);

The showArea command has three arguments that correspond to three
distinct points and emits a comment of the form:

%% area(ABC) = 45
Note that the computed angle is expressed in degrees.

<process showArea command>= (<-U)
chk lparen("showarea",$lc);
my $point 1 = get point($lc);
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$point 1});
my $point 2 = get point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*", $PointTable{$point 2});
my $point 3 = get point($lc);
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$point 3});
print OUT "%% area($point 1$point 2%$point 3) = ",

triangleArea($x1, $yl, $x2, $y2, $x3, $y3), "\n";

chk _rparen("Missing right parenthesis", $1lc);

The showLength command has two arguments that correspond to two
distinct points and emits a comment of the form:

%% length(AB) = 45
Note that the computed angle is expressed in degrees.

<process showlLength command>= (<-U)
chk lparen("showlength",$lc);
my $point 1 = get point($lc);
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$point 1});
my $point 2 = get point($lc);
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$point 2});
print OUT "%% length($point 1$point 2) =",
Length($x1, $yl, $x2, $y2), "\n";
chk _rparen("Missing right parenthesis", $1lc);

If the user hasn't specified units then we use the previous values to
set the coordinate system. If the user hasn't specified either the
xunits part or the yunits, then we don't emit code. In case he/she has
specified both parts we generate the command that sets the plot area.

<generate plot area related commands>= (<-U)

if ('$nounits)
{
printf OUT "\\setcoordinatesystem units <%s,%s>\n",
$xunits, $yunits;
}
if(!$noxrange && !'$noyrange)
{
printf OUT "\\setplotarea x from %.5f to %.5f, y from %.5f to %.5f\n",
$xlow, $xhigh, $ylow, $yhigh;

We first check to see whether there is an opening left parenthesis.
Next we get the various options the user may have entered. The valid
options are the letters L, R, T, B, X, and Y. These letters may be
followed by an optional star * with space characters between the
letter and the star. We use a loop, that stops when a right
parenthesis is found, to go through all possible arguments and append
each argument in the string $axis. Note one can have blank space
between different arguments. The last thing we do is to check for the
closing right parenthesis.

<process axis part>= (<-U)

chk lparen("axis",$lc);
while(/~[™\)1/)
{
if (s/”([lrtbxyl{1}*?)//1)
{

$axis .= $1;

}
elsif (s/~([~lrtbxy])//1)
{

}
s/\s*//;

PrintErrorMessage("Non-valid character \"$1\" in axis()",$lc);

}

chk _rparen("axis(arguments",$lc);

As usual we start by skipping white space. Next we check whether there
is an opening left parenthesis. Now, we expect two
numbers/variables/pair of point representing the ticks increment
value. These ticks increment values must be separated by a comma (and
possibly some white space around them). We use the subroutine
ComputeDist to get the value of the ticks increment value and we
assign to the variables $xticks and $yticks the value of x-ticks and
y-ticks increment value. In case there is a problem we issue an error
message and continue with the next line. The last thing we check is
whether there is a closing right parenthesis.

<process ticks part>= (<-U)
chk lparen("ticks",$lc);
my $ec;
($xticks,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
chk _comma($lc);
($yticks,$ec) = ComputeDist($lc);
next LINE if $ec == 0;
chk rparen("ticks(arguments",$lc);

We actually emit code if the user has specified either the X or Y
option in the axis part. If the user has specified the Y* or the X*
option in the axis part, we just emit the commands \axis left
shiftedto x=0 or \axis bottom shiftedto y=0 respectively and exit. If
the use has specified ticks, then, depending on the options he had
supplied with the axis part, we emit code that implements the user's
wishes. **** HERE WE MUST EXPLAIN THE MEANING OF THE CODE EMITTED!!!

kK k% %k

<generate the rest of the code for the paper command>= (<-U)

YBRANCH: {
if (index($axis, "Y")>-1)
{
if (index($axis, "Y*")>-1)
{
print OUT "\\axis left shiftedto x=0 / \n";
last YBRANCH;
}
if ($yticks > 0)
{

if (index($axis, "T")>-1 && index($axis, "B")==-1)

{
print OUT "\\axis left shiftedto x=0 ticks numbered from ";
print OUT "$ylow to -$yticks by $yticks\n from $yticks to ";
print OUT $yhigh-$yticks," by $yticks /\n";

elsif (index($axis, "T")==-1 && index($axis, "B")>-1)

{
print OUT "\\axis left shiftedto x=0 ticks numbered from ";
print OUT $ylow+$yticks," to -$yticks by $yticks\n from ";
print OUT "$yticks to $yhigh by $yticks /\n";

elsif (index($axis, "T")>-1 && index($axis, "B")>-1)

{
print OUT "\\axis left shiftedto x=0 ticks numbered from ";
print OUT $ylow+$yticks," to -$yticks by $yticks\n from “;
print OUT "$yticks to ",$yhigh-$yticks," by $yticks /\n";

}

else

{
print OUT "\\axis left shiftedto x=0 ticks numbered from ";

print OUT "$ylow to -$yticks by $yticks\n from ";
print OUT "$yticks to $yhigh by $yticks /\n";

}
}
else
{
print OUT "\\axis left shiftedto x=0 /\n";
}
}
}
XBRANCH: { if (index($axis, "X")>-1)
{
if (index($axis, "X*")>-1)
{
print OUT "\\axis bottom shiftedto y=0 /\n";
last XBRANCH;
}
if ($xticks > 0)
{
if (index($axis, "L")>-1 && index($axis, "R")==1)
{
print OUT "\\axis bottom shiftedto y=0 ticks numbered from ";
print OUT $xlow + $xticks," to -$xticks by $xticks\n from";
print OUT " $xticks to $xhigh by $xticks /\n";
}
elsif (index($axis, "L")==-1 && index($axis, "R")>-1)
{
print OUT "\\axis bottom shiftedto y=0 ticks numbered from ";
print OUT "$xlow to -$xticks by $xticks\n from ";
print OUT "$xticks to ",$xhigh-$xticks," by $xticks /\n";
elsif (index($axis, "L")>-1 && index($axis, "R")>-1)
{
print OUT "\\axis bottom shiftedto y=0 ticks numbered from ";
print OUT $xlow + $xticks," to -$xticks by $xticks\n from ";
print OUT "$xticks to ",$xhigh - $xticks," by $xticks /\n";
}
else
{
print OUT "\\axis bottom shiftedto y=0 ticks numbered from ";
print OUT "$xlow to -$xticks by $xticks\n from ";
print OUT "$xticks to $xhigh by $xticks /\n";
}
}
else
{
print OUT "\\axis bottom shiftedto y=0 /\n";
}
P}
LBRANCH: {if (index($axis, "L")>-1)
{
if (index($axis, "L")>-1)
{
if (index($axis, "L*")>-1)
{
print OUT "\\axis left /\n";
last LBRANCH;
}
if ($yticks > 0)
{
print OUT "\\axis left ticks numbered from ";
print OUT "$ylow to $yhigh by $yticks /\n";
}
else
{

print OUT "\\axis left /\n";
}

}
}}
RBRANCH: { if (index($axis, "R")>-1)
{
if (index($axis, "R*")>-1)
{
print OUT "\\axis right /\n";
last RBRANCH;
}
if ($yticks > 0)
{
print OUT "\\axis right ticks numbered from $ylow to $yhigh by ";
print OUT "$yticks /\n";
}

else

{

}

TBRANCH: { if (index($axis, "T")>-1)
{

print OUT "\\axis right /\n";

if (index($axis, "T*")>-1)
{
print OUT "\\axis top /\n";
last TBRANCH;
}
if ($xticks > 0)
{
print OUT "\\axis top ticks numbered from $xlow to $xhigh by ";
print OUT "$xticks /\n";
}

else

{

}

BBRANCH: { if (index($axis, "B")>-1)
{

print OUT "\\axis top /\n";

if (index($axis, "B*")>-1)

{
print OUT "\\axis bottom /\n";
last BBRANCH;

}

if ($xticks > 0)

{
print OUT "\\axis bottom ticks numbered from $xlow to $xhigh by ";
print OUT "$xticks /\n";

}

else

{

}
}}

print OUT "\\axis bottom /\n";

The syntax of the point commands follows:
point[*] (PointName){Coordinates}[PointSymbol]

where PointName is valid point name, Coordinates is either a pair of
numbers denoting the coordinates of the point or an expression by
means of which the system computes the coordinates of the point, and

the PointSymbol is a valid TgX command denoting a point symbol. A

valid point name consists of a letter and at most two trailing digits.
That is, the names all, b2 and c are valid names while qw and s123 are
not. The first thing we do is to set the point shape to the default
symbol (this has been initialized in the main program). Next, we check
whether we have a pointcommand or a point* simply by inspecting the
very next token. Note that there must be no blank spaces between the
token point and the star symbol. Next, we get the point name: remember
that the point name is surrounded by parentheses. In case we don't
find a valid point name we issue an error message and continue with
the next line of input. Suppose the point name was a valid one. If we
have a point* command we must ensure that the this particular point
name has been defined. If we have a point command we must ensure that
this particular point name has not been defined. Point names are
stored in the hash %PointTable. We are now ready to process the
coordinates part and the optional plot symbol part.

<process point/point* commands>= (<-U)
my ($pointStar, $PointName, $origPN);
$pointStar = 0; # default value: he have a point command
$pointStar = 1 if s/™*//;
chk 1lparen("point" . (($pointStar)?"*":""),$lc);
if (s/7(I\WN_1(?!'["\W\d_])\d{0,4})//1) {
#
Note: the regular expression (foo)(?!bar) means that we are
looking a foo not followed by a bar. Moreover, the regular
expression [™\W\d_] means that we are looking for letter.
#
$origPN = $1;
$PointName = lc($1);
}
else {
PrintErrorMessage("Invalid point name",$lc);
next LINE;
}
#if ($pointStar and !exists($PointTable{$PointName})) {
PrintWarningMessage("Point $origPN has not been defined", $lc);
#}
if (!'$pointStar and exists($PointTable{$PointName})) {
PrintWarningMessage("Point $origPN has been used already",$lc);

}
chk _rparen("point" . (($pointStar)?"*":""). "($origPN",$1lc);
chk lcb("point" . (($pointStar)?"*":""). "($origPN)",s$lc);
my ($Px, $Py);
<process coordinates>
chk _rcb("coordinates part",$lc);
my $sv = $defaultsymbol;
my $sh = $defaultLFradius;
my $side or radius = undef;
if (s/"™\[\s*//) { # the user has opted to specify the optional part
<process optional point shape part>
chk _rsb("optional part",$lc);

}

to avoid truncation problems introduced by the pack function, we
round each number up to five decimal digits
$Px = sprintf("%.5f", $Px);
$Py = sprintf("%.5f", $Py);
print OUT "%% point$Point Line \t$origPN = ($Px, $Py)\n" if $comments on;
chk_comment ($1lc);
$PointTable{$PointName} = pack("d3A*",$Px,$Py,$sh,$sv);
if (defined($side or radius)) {
$DimOfPoint{$PointName} = $side or radius;

}

In this section we parse the Coordinates part of the point command.
The complete syntax of the Coordinates part follows:

"circumCircleCenter" "(" Three-Points ")
"incircleCenter" "(" Three-Points ")"
"excircleCenter" "(" Three-Points "," Two-Points ")"
Point-Name ["," Modifier]

Coordinates ::= Variable |
Distance "," Distance |

"midpoint" " (" Point-Name Point-Name ")" |

"pointOnLine" "(" Two-Points "," Distance ")" |

"intersection" "(" Two-Points "," Two-Points ")" |

"perpendicular" "(" Point-Name "," Two-Points ")" |

|

I

|

Modifier ::

"shift" "(" Distance "," Distance ")" |
"polar" "(" Distance, Distance ["deg" | "rad" 1 ")" |
"rotate" "(" Point-Name, Distance ["deg" | "rad"] ")" |
"vector" "(" Two-Points ")"

Distance ::

expression
Two-Points ::= Point-Name Point-Name

Three-Points ::= Point-Name Two-Points
We now briefly explain the functionality of each option:

 midpoint(AB): the midpoint between points A and B
e pointOnLine(AB,d): point at distance d from A towards B
 intersection(AB,CD): intersection of lines defined by AB and CD

 perpendicular(A,BC): point of the foot of the perpendicular from
A to line BC

e circumCircleCenter(ABC): center of circumcircle of triangle ABC

* incircleCenter(ABC):center of incircle of triangle ABC

+ excircleCenter(ABC,BC): center of excircle of triangle ABC,
touching side BC

« A, shift(x,y): Point displaced from A by x and y along the X and

Y axes
« A, polar(r,d): Point displaced from A by distance r in direction
d

« A, rotate(B,d): Rotate A about B by d

We now explain how the following piece of code operates. In case the
first token is a number, we assume that the coordinates are specified
by a number and another number, a variable or a pair of points. So, we
check whether there is a comma and use the subroutine ComputeDist to
get the second coordinate. In case the next token is one of the words
perpendicular, intersection, midpoint, pointonline,
circumcircleCenter, IncircleCenter, or ExcircleCenter we consume the
corresponding token and process the corresponding case. In case the
first two tokens are two identifiers, then we assume that we have a
pair of numbers. We compute their distance, check whether there is a
leading comma and compute the y-coordinate by calling subroutine
ComputeDist. In case the next token is a single identifier, we store
its name in the variable $PointA. If this identifier is a defined
point name, we check whether the next token is a comma. In case it 1is,
we check whether he token after the comma is either the token shift,
polar, or rotate and process each case accordingly. If it is none of

these tokens we issue an error message and continue with the next
input line. Now, if the token after the identifier isn't a comma, we
assume that the coordinates of the point will be identical to those of
the point whose name has been stored in the variable $PointA. If the
identifier is a variable name, we assume that the x-coordinate is the
value of this variable. We check whether the next token is a comma,
and compute the y-coordinate by calling the subroutine ComputeDist.
The x-coordinate is stored in the variable $Px and the y-coordinate in
the variable $Py.

<process coordinates>= (<-U)
if (s/”perpendicular(?=\W)//i) {
<process perpendicular case>

}
elsif (s/"intersection(?=\W)//1i) {
<process intersection case>

}
elsif (s/”midpoint(?=\W)//1i) {
<process midpoint case>

}
elsif (s/”pointonline(?=\W)//i) {
<process pointonline case>

elsif (s/”circumcircleCenter(?=\W)//1i) {
<process circumcircleCenter case>

}
elsif (s/”IncircleCenter(?=\W)//1) {
<process IncircleCenter case>

}
elsif (s/”ExcircleCenter(?=\W)//1i) {
<process ExcircleCenter case>

}
elsif (/7[™\WAd_]J\d{0,4}\s*[*,\w]/) {
m/~([“\W\d_]\d{0,4})\s*/1i;
if (exists($PointTable{lc($1)})) {
my $Tcoord = get point($lc);
my ($x,$y,$pSV,$pS)=unpack("d3A*",$PointTable{$Tcoord});

$Px = $x;
$Py = 3y;

else {
$Px = expr();
chk _comma($lc);
$Py = expr();

}
elsif (/[™\W\d 1\d{0,4}\s*,\s*shift|polar|rotate|vector/i) { #a point?
s/~ ([™\W\d_]\d{0,4})//1;
my $PointA = $1;
if (exists($PointTable{lc($PointA)})) {
s/\s*//;
if (s/7,7/7) {
s/\s*//;
if (s/7”shift(?=\W)//1i) {
<process shift case>

}
elsif (s/”polar(?=\W)//i) {
<process polar case>

}
elsif (s/"rotate(?=\W)//1i) {
<process rotate case>

}
elsif (s/"vector(?=\W)//1i) {
<process vector case>

}

else {
PrintErrorMessage("unexpected token",$lc);
next LINE;
}
}

else {
my ($xA, $yA, $pSVA, $pSA)=unpack("d3A*",$PointTable{lc($PointA)});
$Px $XA;
$Py = $yA;

}
}
else {
PrintErrorMessage("Undefined point $PointA",$1lc);
next LINE;
}
}
else {
$Px = expr();
chk _comma($lc);
) $Py = expr();

In the following piece of code we process the perpendicular case of
the point specification. We first check whether there is an opening
left parenthesis. Next, we get the first point name. In case there is
no point name, we simply abandon the processing of this line and
continue with the next one. Then we see whether there is a trailing
comma. Omitting this token yields a non-fatal error. Then we get two
more points. As before, if we can't find any of these points this
yields a fatal-error. Note, that each time we check that the point
names correspond to existing point names. Then, we call subroutine
perpendicular to calculate the coordinates of the point.

<process perpendicular case>= (<-U)
chk lparen("perpendicular",$lc);
my $FirstPoint = &get point($lc);
next LINE if $FirstPoint eq " undef ";
chk comma($1lc);
my $SecondPoint = &get point($lc);
next LINE if $SecondPoint eq " undef ";
my $ThirdPoint = &get point($lc);
next LINE if $ThirdPoint eq " undef ";
chk _rparen("No closing parenthesis found", $lc);
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*", 6 $PointTable{$FirstPoint});
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
my ($x3,%$y3,$pSV3, $pS3)=unpack("d3A*",$PointTable{$ThirdPoint});
($Px, $Py) = perpendicular($xl,$yl,$x2,%$y2,$x3,%y3);

In the following piece of code we process the intersection case of the
point specification. We get the four point names and if there is no
error we compute the intersection point by calling subroutine
intersection.

<process intersection case>= (<-U)
chk lparen("intersection",$lc);
my $FirstPoint = get point($lc);
next LINE if $FirstPoint eq " undef ";
my $SecondPoint = get point($lc);
next LINE if $SecondPoint eq " undef "“;
chk _comma($lc);
my $ThirdPoint = get point($lc);

next LINE if $ThirdPoint eq " undef ";

my $ForthPoint = get point($lc);

next LINE if $ForthPoint eq " undef ";

chk rparen("No closing parenthesis found",$lc);

my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
my ($x3,$y3,$pSV3, $pS3)=unpack("d3A*",$PointTable{$ThirdPoint});
my ($x4,$y4,$pSV4, $pS4)=unpack("d3A*" 6 $PointTable{$ForthPoint});
($Px, $Py) = intersectiondpoints($x1,$yl, $x2,%$y2,%$x3,%$y3,%$x4,%$y4);

Given two points A and B, the midpoint option computes the coordinates
of a third point that lies on the middle of the line segment defined
by these two points. We get the the two points, and then we compute
the coordinates of the midpoint with function midpoint.

<process midpoint case>= (<-U)
chk 1lparen("midpoint",$lc);
my $FirstPoint = &get point($lc);
next LINE if $FirstPoint eq " undef ";
my $SecondPoint = &get point($lc);
next LINE if $SecondPoint eq " undef ";
chk rparen("No closing parenthesis found",$1lc);

my (
my

($x1,$yl,$pSV1, $pS1l)=unpack("d3A*",$PointTable{$FirstPoint});
($x2,$y2,$pSV2, $pS2)=unpack("d3A*",$PointTable{$SecondPoint});
($Px, $Py) = midpoint($x1l, $yl, $x2, $y2);

Given two points A and B and length d, the PointOnLine option computes
the coordinates of a point that lies d units in the direction from A
towards B. We first get the coordinates of the two points that define
the line and then we get the distance, which can be a number, a
variable, or a pair of points.

<process pointonline case>= (<-U)
chk lparen("pointonline",$1lc);
my $FirstPoint = &get point($lc);
next LINE if $FirstPoint eq " undef ";
my $SecondPoint = &get point($lc);
next LINE if $SecondPoint eq " undef "“;
chk _comma($lc);
now get the distance
my $distance = expr($lc);
chk rparen("No closing parenthesis found",$lc);
my ($x1,$yl,$pSV1, $pSl)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
($Px, $Py) = pointOnLine($x1,$yl, $x2,%$y2,%$distance);

The circumcircleCenter is used when one wants to compute the
coordinates of the center of circle that passes through the three
points of a triangle defined by the three arguments of the option. All
we do is get the coordinates of the three points and then we call the
subroutine circumCircleCenter to compute the center.

<process circumcircleCenter case>= (<-U)
chk _lparen("circumCircleCenter",$lc);
my $FirstPoint = &get point($lc);
next LINE if $FirstPoint eq " undef ";
my $SecondPoint = &get point($lc);
next LINE if $SecondPoint eq " undef ";
my $ThirdPoint = &get point($lc);

next LINE if $ThirdPoint eq " undef ";

chk rparen("No closing parenthesis found",$1lc);

my ($x1,$yl,$pSV1, $pSl)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,%$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint});
($Px, $Py,$r) = &circumCircleCenter($x1,$yl, $x2,%$y2,$x3,%$y3,%$lc)
next LINE if $Px == 0 and $Py == 0 and $r == 0;

’

The IncircleCenter option is to determine the coordinates of a point
that is the center of circle that internally touches the sides of a
triangle defined by three given points. The coordinates are computed
by the subroutine IncircleCenter.

<process IncircleCenter case>= (<-U)
chk lparen("IncircleCenter",$lc);
my $FirstPoint = &get point($lc);
next LINE if $FirstPoint eq " undef ";
my $SecondPoint = &get point($lc);
next LINE if $SecondPoint eq " undef ";
my $ThirdPoint = &get point($lc);
next LINE if $ThirdPoint eq " undef ";
chk _rparen("No closing parenthesis found", $lc);
my ($x1,$yl,$pSV1,$pSl)=unpack("d3A*",$PointTable{$FirstPoint});
my ($x2,$y2,$pSV2,$pS2)=unpack("d3A*",$PointTable{$SecondPoint});
my ($x3,$y3,$pSV3,$pS3)=unpack("d3A*",$PointTable{$ThirdPoint});
($Px, $Py, $r) = IncircleCenter($x1,$yl,$x2,%$y2,$x3,%y3);

The ExcircleCenter option is used to define the coordinates of point
that is the center of an excircle of a triangle. We first check
whether there is an opening left parenthesis. Next, we get the names
of the three points that define the triangle. Then, we check whether
there is a comma. Now we get the names of the two points that define
one side of the triangle. We check whether the two points we get are
of the set of the triangle points. If not we issue an error message
and continue with the next input line. Then we make sure that these
two points are not identical. We compute the actual coordinates by
calling the subroutine excircle. Finally, we make sure there is a
closing right parenthesis.

<process ExcircleCenter case>= (<-U)

chk _lparen("ExcircleCenter",$lc);

my $PointA = get point($lc);

next LINE if $PointA eq " undef "“;

my $PointB = get point($lc);

next LINE if $PointB eq " undef ";

my $PointC = get point($lc);

next LINE if $PointC eq " undef ";

chk _comma($lc);

my $PointD = &get point($lc);

next LINE if $PointD eq " undef "“;

if (!memberOf($PointD, $PointA, $PointB, $PointC)) {
PrintErrorMessage("Current point isn't a side point",$1lc);
next LINE;

}

my $PointE = get point($lc);

next LINE if $PointE eq " undef ";

if (!'memberOf($PointE, $PointA, $PointB, $PointC)) {
PrintErrorMessage("Current point isn't a side point",$lc);
next LINE;

}
if ($PointD eq $PointE) {

PrintErrorMessage("Side points are identical", $lc);
next LINE;

}

($Px, $Py, $r) = excircle($PointA, $PointB, $PointC,
$PointD, $PointE);

chk rparen("after coordinates part",$lc);

The shift option allows us to define a point's coordinates relative to
the coordinates of an existing point by using two shift parameters.
Each parameter can be either a float, a variable name, or a pair of
points.

<process shift case>= (<-U U->)

chk lparen("shift",$lc);
my $distl = expr($lc);

chk _comma($lc);

my $dist2 = expr($lc);

my ($x1,$yl,$pSV1, $pSl)=unpack("d3A*",$PointTable{lc($PointA)});
$Px = $x1 + $distl;

$Py = $yl + $dist2;

chk _rparen("shift part",$lc);

The polar option allows us to define a point's coordinates relative to
the coordinates of an existing point using the polar coordinates of
some other point. We first check whether there is a left parenthesis,
Then we parse the various parts of the polar option. In case the user
has specified the angle in degrees, we have to transform it into
radians, as all trigonometric function expect their arguments to be
radians. Next, we compute the coordinates of the point. We conclude by
checking whether there is a closing parenthesis.

<process polar case>= (<-U U->)

chk lparen("polar",$lc);

my ($R1, $Thetal);

$R1 = expr($lc);

chk _comma($lc);

$Thetal = expr($lc);

my ($x1,%$yl,$pSV1, $pSl)=unpack("d3A*",$PointTable{lc($PointA)});

s/\s*//;

if (s/"rad(?=\W)//1i) {
do nothing!

}

elsif (s/"deg(?=\W)//1i) {
$Thetal = $Thetal * PI / 180;
}
else {
#$Thetal = $Thetal * PI / 180;
}
$Px = $x1 + $R1 * cos($Thetal);
$Py = $yl + $R1 * sin($Thetal);
chk _rparen("after polar part",$lc);

The rotate option allows us to define a point's coordinates by
rotating an existing point, Q, about a third point, P, by a specified
angle. The method to achieve this is to first get the coordinates of
points P and Q and then

1. translate origin to P

2. rotate about P
3. translate from P back to origin, etc

As in the case of the polar option, we check for an opening
parenthesis. Next, we parse the point name and the angle. At this
point we are able to compute the coordinates of the rotated point. We
conclude by checking whether there is a closing parenthesis.

<process rotate case>= (<-U)
chk lparen("rotate",$lc);
my $Q = lc($PointA);
my $P = get point($lc);
next LINE if $P eq " undef ";
chk _comma($lc);
my $Thetal = expr($lc);
my ($xP,$yP,$pSV1, $pS1l)=unpack("d3A*",$PointTable{$P});
my ($xQ,$yQ, $pSV2,$pS2)=unpack("d3A*",$PointTable{$Q});
s/\s*//;
if (s/”rad(?=\W)//1)
{
do nothing!

}
elsif (s/~deg(?=\W)//i)

{
$Thetal = $Thetal * PI / 180;
}
else
{
$Thetal = $Thetal * PI / 180;
}
shift origin to P
$xQ -= $xP;
$yQ -= $yP;

do the rotation

$Px $xQ * cos($Thetal) - $yQ * sin($Thetal);
$Py = $xQ * sin($Thetal) + $yQ * cos($Thetal);
return origin back to original origin

$Px += $xP;

$Py += $yP;

chk rparen("after rotate part",$lc);

vector(PQ) is actually is a shorthand of shift(xQ-xP,yQ-yP). Thus, it
is implemented by borrowing code from the shift modifier.

<process vector case>= (<-U)

chk 1lparen("vector",$lc);
my ($x0,$y0,3$pSV0O,$pS0)
my $P = get point($lc);
my $Q = get_point(s$lc);
my ($x1,$yl,$pSV1l,s$pS1)
my ($x2,$y2,$pSV2,$pS2)
$Px = $x0 + $x2 - $x1;

$Py = $y0 + 3$y2 - $yl;

chk _rparen("vector part",$lc);

I~

unpack("d3A*",$PointTable{lc($PointA)});

unpack("d3A*",$PointTable{$P});
unpack("d3A*",$PointTable{$Q});

When lines are drawn to a point, the line will (unless otherwise
specified) extend to the point location. However, this can be
prevented by allocating an optional circular line-free zone to a point
by specifying the radius (in square brackets) of the optional point
shape part. Currently, in this part we are allowed to describe the

point shape and the radius value. If only the radius is specified,
e.g., [radius=5], then the line-free zone will be applied to the
default point character, i.e., \bullet or whatever it has been set
to. Here is the syntax we employ:

"[" [symbol part 1 [","] [radius part]"

Optional point shape part ::
: "symbol" "=" symbol

symbol part

symbol "circle" "(" expression ")" |
"square" "(" expression ")" |
LaTeX Code

radius part = "radius" "=" expression

Note that it is possible to have right square bracket in the
LaTeX Code but it has to be escaped (i.e., \1]).

<process optional point shape part>= (<-U)
if (/~(symbol|radius|side)\s*/i) {
my @previous options = ();
my $number of options = 1;
my $symbol set = 0;
while (s/”~(symbol|radius)\s*//i and $number of options <= 2) {
my $option = lc($1);
if (s/7=\s*//) {
if (memberOf ($option,@previous options)) {
PrintErrorMessage("Option \"$option\" has been already defined",

$lc);
my $dummy = expr($lc);

elsif ($option eq "radius") {
$sh = expr($lc);
$sv = $defaultsymbol if ! $symbol set;

}
elsif ($option eq "symbol") {
if (s/~circle\s*//i) {
$sv = "circle";
chk 1lparen("after token circle",$lc);
$side or radius = expr($lc);
chk _rparen("expression",$lc);

}
elsif (s/~square\s*//i) {
$sv = "square";
chk lparen("after token square",$lc);
$side or radius = expr($lc);
chk _rparen("expression",$lc);

}
elzif (Sg“(((\\\]){l}l(\\.){1}|(\\\S){1}|[“\].\S])+)//) {
sv = $1;
$sv =~ s/\\\1/\1/g;
$SV =~ S/\\r/r/g;
$sv =~ s/\\ / /g;

s/\s*//;
}
$symbol set = 1;
}
}
else {
PrintErrorMessage("unexpected token", $lc);
next LINE;
}

$number of options++;
push (@previous options, $option);
s/~ \s*//;
}
}

else {

PrintErrorMessage("unexpected token", $lc);
next LINE;

}

The ArrowShape command has either one or three arguments. If the only
argument of the command is the token default, then the parameters
associated with the arrow shape resume their default values. Now, if
there are three arguments, these are used to specify the shape of an
arrow. The command actually sets the three global variables
$arrowLength, $arrowAngleB and $arrowAngleC. Arguments whose value is
equal to zero, do not affect the value of the corresponding global
variables. To reset the values of the global variables one should use
the commane with default as it only argument. The syntax of the
command is as follows:

"ArrowShape" "(" expr [units] "," expr "," expr ")" or
"ArrowShape" " (" "default" ")"
> Here units 1is any valid TeX unit (e.g., "mm", "cm", etc.). Note that

if any of the three expressions is equal to zero, the default value 1is
taken instead. As direct consequence, if the value of the first
expression is zero, the units part is actually ignored.

<process ArrowShape command>= (<-U)

chk lparen("$cmd",$1lc);
if (s/~default//i) {
$arrowLength = 2;

$arrowLengthUnits = "mm";
$arrowAngleB = 30;
$arrowAngleC = 40;

}

else {

my ($LocalArrowLength, $LocalArrowAngleB ,$LocalArrowAngleC) = (0,0,0);
$LocalArrowLength = expr($lc);
if (s/"\s*($units)//i) {
$arrowLengthUnits = "$1";
}
else {
$xunits =~ /(\d+(\.\d+)?)\s*($units)/;
$LocalArrowLength *= $1;
$arrowLengthUnits = "$3";

chk _comma($1lc);
$LocalArrowAngleB
chk comma($1lc);
$LocalArrowAngleC = expr($lc);

$arrowLength = ($LocalArrowLength == 0 ? 2 : $LocalArrowLength);
$arrowLengthUnits = ($LocalArrowlLength == ?7 "mm" : $arrowLengthUnits);
$arrowAngleB ($LocalArrowAngleB == 0 ? 30 : $LocalArrowAngleB);
$arrowAngleC ($LocalArrowAngleC == 0 ? 40 : $LocalArrowAngleC);

expr($lc);

chk _rparen("after $cmd arguments",$lc);

chk _comment("after $cmd command",$lc);

print OUT "%% arrowlLength = $arrowLength$arrowLengthUnits, ",
"arrowAngleB = $arrowAngleB ",
"and arrowAngleC = $arrowAngleC\n" if $comments on;

The PointSymbol command is used to set the point symbol and possibly
its line-free radius. The point symbol can be either a LaTeX symbol or
the word default which corresponds to the default point symbol, i.e.,
\bullet. The line-free radius can be an expression. Here is the

complete syntax:

pointsymbol ::= "pointsymbol" (symbol ["," radius])
symbol = "default" | circle | square | LaTeX Code
circle = "circle" "(" expression ")"

square = "square" "(" expression ")"

radius = expression

Note that the LaTeX Code can contain the symbols \, and \) which are
escape sequences for a comma and right parenthesis, respectively.

<process PointSymbol command>= (<-U)

chk 1lparen("$cmd",$lc);
if (s/~default//i) #default point symbol

$defaultsymbol = "\$\\bullet\$";

elsif (s/~(circle|square)//i) {
$defaultsymbol = $1;
chk_lparen($defaultsymbol, $1lc);
$GlobalDim0fPoints = expr($lc);
chk rparen("expression", $lc);

}
elsif (s/”CCONND) LI O\ {13 (\\\s){1}|[™\),\s])+)//) #arbitrary LaTeX

point

{
$defaultsymbol = $1;
$defaultsymbol=~ s/\\\)/\)/g;
$defaultsymbol=~ s/\\,/,/q;
$defaultsymbol=~ s/\\ / /g;

}

else

{
PrintErrorMessage("unrecognized point symbol",$1lc);

}

if (s/\s*,\s*//) {
$defaultLFradius = expr($lc);
}

chk _rparen("after $cmd arguments",$lc);
chk _comment("after $cmd command",$lc);

The system command provides a shell escape. However, we use a

subroutine to check whether the argument of the command contains
tainted data. If this is the case, then we simply ignore this command.
The syntax of the command is as follows:

system-cmd ::

llsys.temll II(II S.tring II)II

where string is just a sequence of characters enclosed in quotation
marks. We start by parsing a left parenthesis and then we get the
command by calling the subroutine get string. If there is an error we
skip this command. Otherwise, we assign to the variable $ what is
left. Now we check if the variable $command contains any tainted data.
If it doesn't, we execute the command, otherwise we print an error
message and skip to the next input line. Next, we check for closing
right parenthesis and a possible trailing comment.

<process system command>= (<-U)

chk lparen("$cmd", $lc);

my ($error, $command, $rest) = get string($);

next LINE if $error == 1;

$ = $rest;

if (! is tainted($command)) {
system($command) ;

else {
PrintErrorMessage("String \"$command\" has tainted data", $lc);
next LINE;

chk rparen("after $cmd arguments",$lc);
chk _comment ("after $cmd command",$lc);

The text command is used to put a piece of text or a symbol on a
particular point of the resulting graph. The syntax of the command is
as follows:

text-comm ::= "text" "(" text ")" "{"coords"} "[" pos-code "]"
text ::= ascii string
coords ::= Coord "," Coord |
Point-Name "," "shift" "(" Coord "," Coord ")" |
Point-Name "," "polar" "(" Coord "," Coord [angle-unit] ")"
Coord ::= decimal number | variable | pair-of-Point-Names
pair-of-Point-Names ::= Point-Name Point-Name
angle-unit ::= "deg" | "rad"
pos-code ::= lr-code [tb-code] | tb-code [lr-code]
lr-code ::= "1" | "r"
tb-code ::= "t" | "b" | "B"

Initially, we parse the text. Since the text may contain parentheses
we assume that the user enters pairs of matching parentheses. Note,
that this is a flaw in the original design of the language, which may
be remedied in future releases of the software. Then, we check the
coords part. Next, if there is a left square bracket, we assume the
user has specified the pos-code. We conclude by checking a possible
trailing comment. The next thing we do is to generate the PiCTeX code.
The two possible forms follow:

\put {TEXT} [POS] at Px Py

\put {TEXT} at Px Py

<process text command>= (<-U)

chk lparen("text",$lc);
my ($level,$text)=(1,"");
TEXTLOOP: while (1)
{
$level++ if /™\(/;
$level-- if /™\)/;
s/™~(.)//;
last TEXTLOOP if $level==0;
$text .= $1;

}

chk lcb("text part",$lc);

my ($Px, $Py,$dummy,$pos);

$pos="";

s/\s*//;

<process coordinates part of text command>

chk rcb("coordinates part of text command",$lc);
if (s/™\I[//)

{

s/\s*//;
<process optional part of text command>

s/\s*//;
chk rsb("optional part of text command",$lc);

}

chk_comment($lc);
if ($pos eq "")
{

printf OUT "\\put {%s} at %f %f\n", $text, $Px, $Py;
}

else

{
}

printf OUT "\\put {%s} [%s] at %f %f\n", $text, $pos, $Px, $Py;

In this section we define the code that handles the coordinates part
of the text command. The code just implements the grammar given above.
If the first token is a number, we assume this is the x-coordinate. If
it is a variable, we assume its value is the x-coordinate. However, if
it is a point name, we check whether the next token is another point
name. In this case we compute the distance between the two points. In
case we have a single point followed by a comma, we expect to have
either a polar or a shift part, which we process the same we processed
them in the point command.

<process coordinates part of text command>= (<-U)

if (/7I\WNd_]\d{0,4}\s*[",\w]/) {
my $Tcoord = get point($lc);
my ($x,$y,$pSV, $pS)=unpack("d3A*",$PointTable{$Tcoord});
$Px = $x;
$Py = $y;

elsif (/[™\W\d]\d{0,4}\s*,\s*shift|polar/i) {
s/~ ([™\W\d_]\d{0,4})//1;
my $PointA = $1;
if (exists($PointTable{lc($PointA)})) {
s/\s*//;
if (s/7,/77) {
s/\s*//;
if (s/7”shift(?=\W)//1i) {
<process shift case>

}
elsif (s/7polar(?=\W)//i) {
<process polar case>
}
}
}

else {
PrintErrorMessage("undefined point/var",$lc);
next LINE;
}
}
else {
$Px = expr();
chk _comma($lc);
$Py = expr();

}

In this section we process the optional part of the text command. The

general rule is that we are allowed to have up to two options one from
the characters 1 and r and one from the the characters B, b, and t. We
first check whether the next character is letter, if it isn't we issue

an error message and continue with the next input line. If it is a
letter we check whether it belongs to one of the two groups and if it
doesn't we issue an error message and continue with the next input
line. If the next character belongs to first group, i.e., it is either
1L or r, we store this character into the variable $pos. Next, we check
whether there is another letter. If it is a letter, we store it in the
variable $np. Now we make sure that this character belongs to the
other group, i.e., it is either b, B, or t. In case it belongs to the
other group, we append the value of $np to the string stored in the
variable $pos. Otherwise we issue an error message and continue with
the next input line. We work similarly for the other case. In order to
check whether a character belongs to some group of characters, we use
the user defined function memberOf.

<process optional part of text command>= (<-U)

if (s/7(\w{l})\s*//) {
$pos .= $1;
if (memberOf($pos, "1", "r")) {
if (s/7(\w{l})\s*//) {
my $np = $1;
if (memberOf($np, "t", "b", "B")) {
) $pos .= $np;
else {
if (memberOf($np, "1", "r")) {
PrintErrorMessage("$np can't follow 'l' or 'r'", $lc);
}

else {
PrintErrorMessage("$np is not a valid positioning option", $lc);

}
next LINE;
}
) }
elsif (memberOf($pos, "t", "b", "B")) {
if (s/7(\w{l})\s*//) {

my $np = $1;

if (memberOf($np, "1", "r")) {
) $pos .= $np;

else {

if (memberOf($np, "t", "b", "B")) {
PrintErrorMessage("$np can't follow 't', 'b', or 'B'", $lc);
}

else {
PrintErrorMessage("$np is not a valid positioning option", $lc);

}
next LINE;
}
}
}
else {
PrintErrorMessage("$pos is not a valid positioning option", $lc);
next LINE;

}

}

else {
PrintErrorMessage("illegal token in optional part of text command",$lc);
next LINE;

}

The const command is used to store values into a comma separated list

of named constants. Constant names have the same format as point
names, i.e., they start with a letter and are followed by up to two
digits. The whole operation is performed by a do-while construct that
checks that there is a valid constant name, a = sign, and an
expression. The do-while construct terminates if the next token isn't
a comma. Variable $Constname is used to store the initial variable
name, while we store in variable $varname the lowercase version of the
variable name. In addition, we make sure a constant is not redefined
(or else it wouldn't be a constant:-). The last thing we do is to
check whether there is a trailing comment. In case there, we simply
ignore itl; otherwise we print a warning message.

<process const command>= (<-U)
do{
s/\s*//;
PrintErrorMessage("no identifier found after token const",$lc)
if $_ !~ s/~ ([™\W\d_]\d{0,4})//1i;
my $Constname = $1;
my $constname = lc($Constname);
if (exists $ConstTable{$constname}) {
PrintErrorMessage("Redefinition of constant $constname", $lc);
}
s/\s*//; #remove leading white space
PrintErrorMessage("did not find expected = sign",$lc)
if $!~ s/~[=1//1;
my $val = expr($lc);
$VarTable{$constname} = $val;
$ConstTable{$constname} = 1;
print OUT "%% $Constname = $val\n" if $comments on;
while (s/*~,//);
chk_comment($1lc);
s/\s*//;
if (/7[7%]1/) {
PrintWarningMessage("Trailing text is ignored",$lc);

}

The var command is used to store values into a comma separated list of
named variables. Variable names have the same format as point names,
i.e., they start with a letter and are followed by up to two digits.
The whole operation is performed by a do-while construct that checks
that there is a valid variable name, a = sign, and an expression. The
do-while construct terminates if the next token isn't a comma. The
variable $Varname is used to store the initial variable name, while we
store in the variable $varname the lowercase version of the variable
name. The last thing we do is to check whether there is a trailing
comment. In case there, we simply ignore itl; otherwise we print a
warning message.

<process var command>= (<-U)
do{

s/\s*//;

PrintErrorMessage("no identifier found after token var",$lc)
if $ '~ s/~([™\W\d_]\d{0,4})//1i;

my $Varname = $1;

my $varname = lc($Varname);

if (exists $ConstTable{$varname}) {
PrintErrorMessage("Redefinition of constant $varname",$lc);

}

s/\s*//; #remove leading white space

PrintErrorMessage("did not find expected = sign",$1lc)
if$ '~ s/[=1//1;

my $val = expr($lc);

$VarTable{$varname} = $val;

print OUT "%% $Varname = $val\n" if $comments on;
twhile (s/*,//);
chk_comment($1lc);
s/\s*//;
if (/7°17%1/7) A

PrintWarningMessage("Trailing text is ignored",$lc);
}

<*>: D1

<Check for command line arquments>: Ul, D2

<Check if .m file exists>: Ul, D2

<Define global variables>: Ul, D2

<generate plot area related commands>: Ul, D2

<generate the rest of the code for the paper command>: Ul, D2
<package DummyFH >: Ul, D2

<process angle part of command>: Ul, D2

<process ArrowShape command>: Ul, D2

<process axis part>: Ul, D2

<process circumcircleCenter case>: Ul, D2
<process const command>: Ul, D2

<process dasharray command>: Ul, D2

<process drawAngleArcOrArrow command>: Ul, D2
<process drawcircle command>: Ul, D2

<process drawcircumcircle command>: Ul, D2
<process drawexcircle command>: Ul, D2
<process drawincircle command>: Ul, D2
<process drawPerpendicular command>: U
<process drawpoint command>: Ul, D2
<process drawRightAngle command>: Ul, D2
<process drawsquare command>: Ul, D2
<process ExcircleCenter case>: Ul, D2
<process IncircleCenter case>: Ul, D2
<process inputfile* command>: Ul, D2
<process inputfile command>: Ul, D2
<process intersection case>: Ul, D2
<process linethickness command>: Ul, D2
<process midpoint case>: Ul, D2

<process paper command>: Ul, D2

<process perpendicular case>: Ul, D2
<process point/point* commands>: Ul, D2
<process pointonline case>: Ul, D2
<process PointSymbol command>: Ul, D2
<process polar case>: Ul, D2, U3
<process radius part of command>: Ul, D2
<process rotate case>: Ul, D2

<process shift case>: Ul, D2, U3
<process showAngle command>: Ul, D2
<process showArea command>: Ul, D2
<process showlength command>: Ul, D2
<process system command>: Ul, D2
<process text command>: Ul, D2

<process

ticks part>:

<process

unit part>: Ul 2

<process

var command>:

<process

vector case>:

<process

xrange part>: Ul

<process

wlllwNiwlw)
SRR

yrange part>: Ul

<Process

command line arguments>: Ul, D2

<process

coordinates>: Ul, D2

<process

coordinates part of text command>: Ul,

<process

file>: Ul, D2

<process

input line>: Ul, D2

<process

optional part of text command>: Ul,

<process

optional point shape part>: Ul,

<subroutine

Angle >: Ul, D2

<subroutine

chk _comma >: Ul, D2

<subroutine

chk_comment , D2

<subroutine

M=
N [

chk lcb >: -

<subroutine

>:
1,

chk_lparen D2

[
=

<subroutine

chk_lsb >:

’

<subroutine

EEYE
RR

chk rcb >:

’

<subroutine

[

chk_rparen >: Ul, D2

<subroutine

chk_rsb >: Ul, D2 o

<subroutine

circumCircleCenter >: Ul, D2

<subroutine

ComputeDist >: Ul, D2

<subroutine

drawAngleArc >: Ul, D2

<subroutine

drawAngleArrow >: Ul, D2

<subroutine

drawarrows >: Ul, D2 o

<subroutine

drawCurve >: Ul, D2

<subroutine

DrawlLineOrArrow >: Ul, D2

<subroutine

drawlines >: Ul, D2

<subroutine

drawpoints >: Ul, D2

<subroutine

drawsquare >: Ul, D2

<subroutine

excircle >: Ul, D2

<subroutine

expr >: Ul, D2

<subroutine

get point >: Ul, D2

<subroutine

get_string >: Ul, D2

<subroutine

IncircleCenter >: Ul, D2

<subroutine

intersection4points >:__1, 2

<subroutine

is_tainted >: Ul, D2

<subroutine

Length >: Ul, D2

<subroutine

member0f >: Ul, D2

<subroutine

midpoint >: Ul, D2

<subroutine

<subroutine

mpp >: Ul, D2
noOfDigits >: Ul, D2

<subroutine

perpendicular >: Ul, D2

<subroutine

pointOnLine >: Ul, D2

<subroutine

print headers >:

<subroutine

1, D2
PrintErrorMessage >: D2

<subroutine

PrintFatalError >: Ul, D2

<subroutine

uil,
PrintWarningMessage >: Ul, D2

<subroutine

process input >: Ul, D2

D2

<subroutine setlineThickness >:
<subroutine sp2X >: Ul, D2
<subroutine tand >: Ul, D2
<subroutine triangleArea >: Ul, D2
<subroutine X2sp >: Ul, D2
<subroutine definitions>: Ul, D2

|

—
|U
N

	Introduction
	Program Structure

