mathsPIC, April 2010, version 1-13

Apostolos Syropoulos

Richard W. D. Nickalls

The single biggest problem we face is that of visualisation.

Richard P. Feynman (1918—-1988)
The Mathematical Gazette (1996); 80, 267

mathSPICPer, version 1-13

Apostolos Syropoulos,
Greek TgX Friends,
366, 28th October Street,
GR-671 00 Xanthi, Greece.
asyropoulos @yahoo.com
http://oceanl.ee.duth.gr/~apostolo

and

Richard W. D. Nickalls,
Department of Anaesthesia,
Nottingham University Hospitals,
City Hospital Campus,
Nottingham, UK.
dick@nickalls.org
http://www.nickalls.org/dick/

l5) & Tl d]

26 April 2010

ii

http://ocean1.ee.duth.gr/~apostolo
http://www.nickalls.org/dick/

TEX Users Group: http://www.tug.org/
TEX Usenet group: comp.text.tex

TUGboat: http://www.tug.org/TUGboat/
The PracTEX Journal: http://www.tug.org/pracjourn/

CTAN (Comprehensive TgX Archive Network)
ftp://ftp.tex.ac.uk/ http://www.tex.ac.uk/
ftp://ftp.ctan.org/ http://www.ctan.org/

mathsPIC,,,;: CTAN: /graphics/mathspic/perl/

Typeset in
Times 10-point font
using IXTEX 2¢

Cover figure by
FrantiSek Chvala

Copyright © A Syropoulos & RWD Nickalls 26 April 2010

mathsPIC is released under the terms of the I4TEX Project Public License.

mathsPIC is distributed without any warranty or implied warranty of
merchantability or fitness for a particular purpose.

iii

Contents

iv

1 Introduction 1
2 Running mathsPICp,,; 5
2.1 Installation 5
2.1.1 The mathsPICpackage 5
2.1.2 Unix/Linux platform 6

2.1.3 MS-Windows platform 7

2.14 mathspic.sty 7

2.1.5 mathspicX.pl 7

2.2 Command-line syntax 7
23 Files e 8
2.3.1 Filename extensions 8

24 Switches e 9
2.5 Removingcommentlines L. 9
2.6 Onlinehelp e 9
2.7 The mathsPICstyle-option 10
2.8 Error-messages i e e e e e 11
29 Logfile 12
3 The mathsPIC script file 13
3.1 mathsPICstyleoption 13
3.2 Headersandfooters 13
33 Commands 15
34 MacCros e 16
34.1 Macrolibrary 17

3.5 Theplottingarea 17
351 AXES . ..o e 17

352 Secondy-axiS ioi e 20

353 Units oo e 21

354 Tick-marks o 22

3.6 Points 22
3.6.1 Point-name, 22

3.6.2 Point-symbol 22

3,63 Linefreezone 23

3,64 Orderofpoints 26

37 Lines e 26
3.7.1 Linethickness 26

3.7.2 Recommendations 28

CONTENTS

38 Text
3.9 Variables and constants
3.9.1 Scalar variables
3.9.2 Scalar constants
3.9.3 Mathematics

3.9.4 Scientificnotationo

3.10 The LOOP environment

4 mathsPIC commands
4.1 Mathematics.
41.1 Macros
4.1.2 Making a macro library .

4.2 Command definitions e
421 Backslash

422 ArrowShape

423 beginLoop ... endLoop environment
4.2.4 beginSkip ... endSkip environment

425 Const
42.6 DashArray
427 DrawAngleArc
4.2.8 DrawAngleArrow
429 DrawArrow

4210 DrawCircle o
4211 DrawCircumcircle
4212 DrawCurve e e

4.2.13 DrawExcircle
4.2.14 Drawlncircle
4.2.15 DrawLine
4.2.16 DrawPerpendicular . . .
4.2.17 DrawPoint
4.2.18 DrawRightangle
4.2.19 DrawSquare.
4.2.20 DrawThickArrow
4.2.21 DrawThickLine
4222 InputFile
4.2.23 LineThickness
4.2.24 Loop environment . . .
4225 Paper

4226 Point

4.2.27 PointSymbol
4.2.28 Skip environment
4229 Show..

4230 System e e e
4231 Text . . .

4232 Var

4.3 Summary of mathsPIC commands

5 PiCTeX commands

5.1 Useful PiCTeX commands

5.2 Using the $ symbol with PiCTeX

29
30
30
30
30
31
32

CONTENTS vi

6 TgX and IATEX commands 60
6.1 Headersandfooters 60

6.2 thispagestyle{} 61

6.3 typeout{} 61

6.4 TheColorpackage 61

6.5 Other useful ATEX commands 62

7 Examples 63
7.1 Input-andoutputfiles. oL 63
7.2 Linemodes 67

T3 AITOWS . . o o o e e 70

74 Circles&colour. L 73

7.5 Functionally connected diagrams 77

7.6 Inputting the same data-filerepeatedly 78
7.6.1 Using the beginloop. . .endloop environment 81

7.6.2 Using I4TEX to cycle a loopcounter 82

7.7 Plotting graphs 83
7.8 Drawingothercurves 86

7.9 Scaling e 89
7.10 Using Perl programs 89
7.10.1 Example-1 0L, 89

7.10.2 Example-2 93

7.10.3 Commands for processing thefiles 99

8 Accessing TgX parameter values' 100
8.1 Useful TgX commands 100

8.2 Outputtingdatatoafile 101

83 Thefinalcode 103

9 Miscellaneous 106
9.1 Acknowledgements L Lo 106

9.2 Feedback 106

9.3 Developmenthistory 106

A Tables 107
Arrows 110

C Positioning the figures 113
C.1 Generating PS, EPS, PDF, JPEGfiles. 113
C.2 Usingthe figureenvironment 114
C.3 Usingthe PiCTeXcode 117

D Installing Perl in MS-Windows 118
D1 Perl 118
D2 Texteditors 121

'Much of this chapter was originally presented by RWD Nickalls to the November 2001 ukTUG meeting.

CONTENTS

E PiCTeX

E.1 Theoriginal files (1986)
E.2 The new updated files (1994)

E.3 Pictex2.sty
E.4 Errorbars.tex . . .
ES5 DCpic
E.6 The PICTEX Manual

References

vii

122
122
123
124
124
125
125

127

Chapter 1

Introduction

MathsPIG,,, is an open source Perl program for drawing mathematical diagrams and
figures! (Nickalls, 1999; Syropoulos and Nickalls, 2000, 2005, 2007). More specifically,
MathsPIC is a ‘filter’ program which parses a plain text input-file (known as the
mathsPIC or .m file), and generates a plain text output-file containing TgX, I&TEX and
PICTEX commands for drawing a diagram. This output-file—which has by default an
.mt filename-extension as it is really a TgX file—can then be processed by TEX or IATEX
in the usual way. It is anticipated that future versions will be able to generate output
files in PostScript and SVG code.

Spaces and the comment 7% symbol are used by mathsPIC in the same way as
TgX. However, mathsPIC commands are not case-sensitive, and do not have a leading
backslash (in order to distinguish them from PICTEX, TgX and IATgX commands, all of
which can be freely used in the mathsPIC script file). MathsPIC also returns various
parameter values in the output-file, e.g., angles, distances between points, center and
radius of inscribed and exscribed circles, areas of triangles etc., since such values can
be useful when making adjustments to a diagram.

The original motivation for mathsPIC arose from the need for an easy-to-use fil-
ter program for PICTEX, a versatile and freely available drawing package which of-
fers the convenience of graphics code within the TgX document itself (e.g., printer-
independence). In this way, MathsPIC overcomes the main disadvantage of PICTEX,
which is that PICIEX requires you to specify the coordinates of all the points. Conse-
quently, this can make PICTEX extremely awkward to use whan making complicated
diagrams, particularly if several coordinates have to be re-calculated manually each time
the diagram is adjusted.

For example, suppose it is necessary to draw a triangle ABC with AB 5 cm, AC 3 cm,
and included angle BAC 40 degrees, together with its incircle. One such triangle is
shown in Figure 1.1 and the PICTEX commands for drawing it are as follows (point A is
at the origin (0,0) and the units are in cm).

IThe first version of mathsPIC (an MS-DOS version) was presented at the 1999 EuroTgX conference
in Heidelberg, Germany (Nickalls, 1999). A much improved Perl version was then developed, and a
‘work-in-progress’ presentation was given at the 2000 EuroTgX meeting in Oxford, UK (Syropoulos and
Nickalls, 2000). The first Perl version (1-0) was eventually uploaded to CTAN in 2005. The mathsPICp,,
program is written in Perl 5.8.2 built for i86pc-Solaris. MathsPICp,,; can be freely downloaded from CTAN
(http://www.ctan.org/tex-archive/graphics/mathspic/perl/).

http://www.ctan.org/tex-archive/graphics/mathspic/perl/

CHAPTER 1. INTRODUCTION 2

C

Figure 1.1:

\put {\bullet} at 0 O % point A

\put {\bullet} at 4.924039 0.8682409 % point B

\put {\bullet} at 1.928363 2.298133 % point C

\plot 0 0 4.924039 0.8682409 1.928363 2.298133 0 0 /
\circulararc 360 degrees from 3.0086 1.2452 center at 2.1568 1.2452
\put {A} at -0.5 O

\put {B} at 5.424039 .8682409

\put {C} at 1.428363 2.298133

Although point A can be placed at the origin for convenience we have to resort to
geometry and a calculator to determine the coordinates of points B and C, since in this
example AB, AC, and the included angle are all defined (see above). It is then necessary
to recall the coordinates of all the points in order to write the \plot command. Finally,
the \circulararc command requires even more geometry and calculation to figure
out the radius of the incircle, the coordinates of its center, and the coordinates of the
starting point of the arc-drawing routine. Furthermore, if the initial diagram is not
a suitable shape or size, the calculator has to be used again for any adjustments. In
practice, therefore, PICTEX requires a certain amount of planning and calculation for all
but the simplest of diagrams.

MathsPIC overcomes all these difficulties by providing an environment for manipu-
lating named points and variables, which has the effect of making even very complicated
mathematical diagrams easy to create. For example, the equivalent mathsPIC commands
(which do not have a leading backslash) for drawing Figure 1.1 are as follows (the units
are in cm as before).

point (A){0,0} % A is at origin

point (B) {A,polar(5,10 deg)} % B is 5 cm from A; AB slope 10 deg
point (C){A,polar(3,50 deg)} % C is 3 cm from A; BAC = 40 deg
drawPoint (ABC) % put \bullet at points A B C
drawline (ABCA) % draw the triangle

drawIncircle (ABC) % draw the incircle

var d = 0.5 % let d = 0.5 cm

text (A){A, polar(-d,-140 deg)} % label for A

text (B){B, shift(d,0)} % label for B

text (C){C, shift(-d,0)} % label for C

Full mathsPIC file

The complete mathsPIC file for drawing Figure 1.1 is shown below. The style-option
mathspic. sty automatically loads PICTEX, and also implements the I&TEX command
\thispagestyle{empty} to stop a page number appearing in the figure.

CHAPTER 1. INTRODUCTION 3

% mpicpmO1l-1.m
\documentclass[adpaper]{article}
\usepackage{mathspic,color}
\begin{document}

\beginpicture

\setdashes

\color{bluel}’%

paper{units(lcm) xrange(-0.5,5), yrange(-0.5,2.5) axes(XY)}
\setsolid

point (A){0,0}

point (B){A, polar(5, 10 deg)}
point (C){A, polar(3, 50 deg)}
\color{blackl}’

drawpoint (ABC)

drawLine (ABCA)

\color{red}’

drawIncircle (ABC)
\color{black}%

var d = 0.5

text (A){A, polar(d,-140 deg)}
text (B){B, shift(d,0)}

text (C){C, shift(-d,0)}
\endpicture

\end{document}

All that remains is to generate the PS file using dvips, crop the image to the
bounding box (using the -E option) and generate the EPS and PDF versions (see
Section C.1). For example, if the mathsPIC file is, say, triangle .m, then the commands
would be as follows:

mathspic triangle.m

latex triangle.mt

dvips triangle.dvi -o triangle.ps
dvips -E triangle.dvi -o triangle.eps
epstopdf triangle.eps

Unique facilities

MathsPIC facilitates the drawing of PICTEX diagrams because not only does it allow
points to be defined in terms of other points (relative addressing), but it also allows
the use of scalar variables which can be manipulated mathematically. Consequently,
diagrams can be constructed in an intuitive way, much as one might with a compass
and ruler; for example, constructing a point at a certain position in order to allow some
other point to be constructed, perhaps to draw a line to. In other words, mathsPIC
offers the freedom to create ‘hidden’ points having a sort of scaffolding function. In
particular, this facility allows diagrams to be constructed in such a way that they remain
functionally connected even when points are moved (see Section 7.5).

MathsPIC offers a number of other facilities, which allow the accurate drawing of
extremely complicated diagrams. Since mathsPIC itself is a Perl program, both point

CHAPTER 1. INTRODUCTION 4

coordinates and variables can be defined using all the usual mathematical functions and
syntax we associate with Perl. Files can be input recursively (using the inputfile
command); there is a do—loop facility; and macros can be defined. In fact two sorts of
macros can be used in the mathsPIC file, namely (a) special mathsPIC macros, and
(b) the familiar TeX macros. Macros can also be stored in a library file (an ordinary
ASCII text file) and input as and when necessary. Furthermore, the standard I4TEX
packages can of course be used; e.g., the Color package and the Rotation package.

A powerful feature of mathsPIC is its facility for accessing the Perl command-line.
This allows users to write their own dedicated Perl programs for writing configurable
chunks of mathsPIC code on-the-fly to files which can then be input when required;
for example, to draw particular elements of a diagram or even complete diagrams (see
Section 7.10). The ability to use Perl programs in this way is, therefore, equivalent to
having a powerful subroutine facility. It follows, therefore, that users can create their
own library of useful Perl programs as well as libraries of mathsPIC macros.

Finally, note that mathsPIC can also be viewed as a handy tool for exploring
geometry since its show commands return the values of various parameters; for example,
angles, the distance between points, and areas of triangles.

Chapter 2

Running mathsPICp,,,

MathsPIG,,, is a Perl program and will therefore run on any platform on which Perl
is installed. Apart from minor platform differences regarding filename conventions,
commands for creating, editing and deleting ASCII files and so on, the practicalities of
running and using mathsPIC will be essentially the same whichever platform is being
used.

MathsPIC was developed using both GNU Linux and a Solaris x86 box, and
consequently some of the command-line codes may reflect this perspective. For example,
the following mathsPIC command to delete the file temp. txt

system("rm temp.txt")

uses the Unix' ‘remove’ command rm. Clearly this particular command will differ
between platforms but it is assumed that users are familiar with their own local system
commands. MS-Windows users may wish to look at Appendix D in which we address
installing Per]l on a MS-Windows platform. The authors welcome any relevant platform-
related information so we can include it in updates to this manual.

2.1 Installation

If you have a recent TgXLive installation (2009 or later) then both mathsPIC and
PICIEX will already be installed. However, mathsPIC may not be immediately runnable
from the command-line as this depends on the status and location of the Perl program
mathspicX.pl and the associated BASH file mathspic.sh.

2.1.1 The mathsPIC package

The latest version of mathsPIC,,, can be downloaded from the following directory in
CTAN.

CTAN: /tex-archive/graphics/mathspic/perl/

' The term “Unix” here is used as a synonym for both Unix systems (e.g., Solaris, TrueUnix) and Unix-like
systems (e.g., Linux, FreeBSD).

CHAPTER 2. RUNNING MATHSPICpgrr 6

List of files

grabtexdata.pl % program used in Chapter 8

HELP.TXT % text version of the Unix manpage
mathspicX.pl % mathsPIC program version X (perl)
mathspic.sty % style option

mathspic.1 % unix/Linux manpage file

mathspic.sh % example BASH file for running mathsPIC
MATHSPIC.BAT % example batch file (MS-Windows)
mathsPICmanual.pdf % manual

mathsPICmanual.zip % manual--all the LaTeX and figure files
mathsPICfigures.zip % all the .m and .pl files described in the manual

mathspic.1lib % example library file of macros
README. txt % this file

sourcecode.pdf % source code

sourcecode.html % source code

sourcecode.nw % source code (noweb format)

2.1.2 Unix/Linux platform

Note that TgXLive generally places non-executable mathsPIC scripts and programs
(e.g.,mathspic113.pl and mathspic.sh)in a ‘scripts’ directory, for example
/usr/local/texlive/2010/texmf-dist/scripts/mathspic/
and executable ones into
/usr/local/texlive/2010/bin/i386-1inux/
Consequently, this last directory needs to be included in the $PATH.

When installing mathsPIC manually, place the files as follows (and then update
your system’s TX-file index, by invoking the texhash command, so the new files can
be found by the system).

o IATEX package (mathspic.sty)

This file needs to be placed either (a) with the TgX style-options (typically in the di-
rectory /usr/share/texlive/20XX/texmf-dist/tex/latex/mathspic/)or
possibly (b) among your ‘local’ packages (for example in:
/usr/local/texlive/texmf-local/tex/latex/local/mathspic/).

e The mathsPIC program (mathspicX.pl)
This file should be placed where your shell can find it (typically in the directory
/usr/local/bin/).

e The mathsPIC BASH script (mathspic.sh)
This file should be placed where your shell can find it (typically in the directory
/usr/local/bin/).

e Unix man page (mathspic.1)

This useful quick-reference file should be placed in the directory where the
man pages of your installation reside (typically in /usr/share/man/man1/).
Following this, you will be able to access the mathsPIC man page by typing the
command

$ man mathspic

CHAPTER 2. RUNNING MATHSPICpgrr 7

2.1.3 MS-Windows platform

Since mathsPIC is a Perl program, if Perl is not already installed then see Appendix D
for directions on how to install a free version of Perl.

2.1.4 mathspic.sty
Locate the directory containing all the IATEX packages, and create a mathspic subdirec-
tory. Copy into this new directory the file mathspic.sty.

2.1.5 mathspicX.pl

Locate the directory containing all the Perl .pl programs (typically the directory
c:\perl\bin\ for the ActivePerl implementation of Perl) and copy into this direc-
tory the file mathspic.pl (see Appendix for details regarding installing Perl on MS-
Windows platforms).

2.2 Command-line syntax

The general command-line syntax is as follows.

’ $ perl [(perl switches)] mathspic.pl [{mathspic switches)] (inputfile) [-o (outputfile)] ‘

By default mathsPIC writes the output to a file having the same filename as the
input file, but with the filename extension .mt. If you forget to type an input filename,
then mathsPIC writes the following line to the screen.

mathspic version 1.13 Apr 26, 2010
Usage: mathspic [-h] [-b] [-c] [-o <out file>] <in file>

If you type $ mathspic -h you get all the switches information as well

This is mathspic version 1.13 Apr 26, 2010
Type "man mathspic" for detailed help
Usage: mathspic [-h] [-b] [-c] [-o <out file>] <in file>

where,

[-bl] enables bell sound if error exists
[-c] disables comments in output file
[-h] gives this help listing

[-o] creates specified output file

There are several ways of running mathsPIC from the commandline, as follows (at
the time of writing the current version of the program is mathspic113.pl):

[a |—Invoking the Perl interpreter

The minimum command required to process the script file myfile.mis

$ perl mathspic113.pl myfile.m

CHAPTER 2. RUNNING MATHSPICpgrr 8

@—Making the mathspicX.pl program executable

This is probably the most efficient approach, and is therefore the recommended method.

1 Rename the mathsPIC program (mathspic113.pl) to just (mathspic);
$ mv mathspic113.pl mathspic

2 Now make the file executable, by typing the command:
$ chmod 755 mathspic

and then copy it to where the shell can find it (typically /usr/local/bin/).
Now mathsPIC can be run from any directory by typing

$ mathspic myfile.m

Note that this is the approach adopted by TgXLive, which places executable files in the
directory,

/usr/local/texlive/2010/bin/i386-1inux/

which therefore needs to be included in the $PATH.

[¢ }—Using a batch file

Alternatively, mathsPIC can be run via a batch file, and an example BASH file is
included in the package (mathspic.sh). Rename the BASH file to mathspic; make it
executable; and then copy it to where the shell can find it (typically /usr/local/bin/).
Now mathsPIC can be run from any directory just by typing

$ mathspic myfile.m

2.3 Files

2.3.1 Filename extensions

Throughout this manual we use the filename extension .m to denote a mathsPIC script
file (input-file), purely in order to distinguish them from the other files which are
generated by mathsPIC. In practice, though, the mathsPIC program will accept any
filename-extension preferred by the user’. However, mathsPIC by default uses the
extension .mt for the TgX output-file (a TgX file containing PICTEX commands ready
for TeXing), and the extension .m1lg for the log-file.

The mathsPIC command-line actions one input file and (optionally) one output
filename (prefixed by the —o switch). Each command or switch must be separated by at
least one space, as in the following example.

$ mathspic inputfile -o outputfile

2For example, there is an obvious clash with the extension used by the program Mathematica, so in this
case a user could consider, perhaps, the alternative extension .mp for a mathsPIC script file.

CHAPTER 2. RUNNING MATHSPICpgrr 9

If the outputfile is not specified then mathsPIC will create an output-file having
the same filename as the inputfile but with the filename extension .mt. For exam-
ple, if you want an input-file called myinfile.abc to generate an output-file called
myoutfile.xyz then use the following command.

$ mathspic myinfile.abc -o myoutfile.xyz

MathsPIC also writes to a log file (the .mlg file). This has the same filename as the
input filename.

2.4 Switches

There are four command-line switches (-<h -c¢c -b -o) which are case-sensitive. If
more than one switch is used then they must be separated by at least one space. The
switches are as follows (this information is also given by typing $ mathspic -h).

-h Help—gives basic information

-b Beep—a beep is sounded if mathsPIC detects an error. If an audible beep does
not sound in the presence of an error, then check the PC configuration to see if
the PC beep is disabled.

-c Disables comment line generation in the output file.

-0 Output file name

2.5 Removing comment lines

Once a diagram has been finalised, it is sometimes convenient to remove all the various
commented lines from the final output-file, particularly if the file is a large one. This can
be easily done using the —c switch, which will stop mathsPIC writing any comments
to the output .mt file. For example, the following command disables the writing of
comment lines to the output .mt file.

$ mathspic -c inputfilename

2.6 Online help

In Unix systems typing the command
$ man mathspic

will open the manpage help file. If this fails, then check that the man page file

(mathspic. 1) has been placed in the correct directory (typically /usr/share/man/man1/.

MS-Windows users can read the equivalent file HELP.TXT.

CHAPTER 2. RUNNING MATHSPICpggi. 10

2.7 The mathsPIC style-option

Since some PICTEX commands are redefined by mathsPIC it is always necessary to
use the mathsPIC style-option by using the following command in the preamble of the
[ATEX document.

\usepackage{mathspic}

If the color package is used, then it must be loaded after the mathspic package, as
follows:

\usepackage{mathspic, color}

Since mathsPIC is only used to generate figures and diagrams, the style-option
also includes the I4TEX command \thispagestyle{empty} in order to stop page
numbers appearing in a figure. Note also that if page numbering is not disabled when
creating a diagram, then the page number will prevent the DVIPS BBox -E option
(see Section C.1) from removing all the white space from between the figure and the
number. However, there are instances when it may be useful to comment out the
\thispagestyle{empty} command, as detailed in Section C.3.

The style-option also defines the macros for various forms of the logo (e.g., math-
sPIC, mathsPIC,, mathsPIC,,,).

The style-option is as follows:

Do

%% This is file ‘mathspic.sty’,

%% April 26, 2010

hh

%% (c) copyright 2004-2010 A Syropoulos & RWD Nickalls

%% This program can be redistributed and/or modified under the terms
%% of the LaTeX Project Public License Distributed from CTAN
%% archives in directory macros/latex/base/lppl.txt; either
%% version 1 of the License, or any later version.

Toe

%% Please report errors or suggestions for improvement to

Dot

%ot Apostolos Syropoulos Dick Nickalls
Dot apostolo@yahoo.com dick@nickalls.org
Hoo

\wlog{Package ‘mathspic’ A Syropoulos & RWD Nickalls (April 2010)1}%

\typeout{Loading mathsPIC package (c) RWD Nickalls & A Syropoulos’
April 20103}%

\ProvidesFile{mathspic.styl}/

[2010/04/26 v1.13 Package ‘mathspic.sty’l%

\def\fileversion{1.13}

\def\filedate{2010/04/263}

\ifx\fiverm\undefined
\newfont\fiverm{cmr5}

\fi
\let\Linethickness\linethickness},
=== mathsPIC logos——-——-——-—-——————————-

\newcommand{\mathsPIC}{\textsf{mathsPIC}}

CHAPTER 2. RUNNING MATHSPICpggi. 11

\newcommand{\MathsPIC}{\textsf{MathsPIC}}
\newcommand{\mathsPICp}{\textsf{mathsPIC}/
\kern-0.08em\raisebox{-0.15em}{\textit{\tiny P}}}
\newcommand{\MathsPICp}{\textsf{MathsPIC}/
\kern-0.08em\raisebox{-0.15em}{\textit{\tiny P}}}
\newcommand{\mathsPICperl}{\textsf{mathsPIC}/,
\kern-0.08em\raisebox{-0.15em}{\textit{\tiny Perl}}}
\newcommand{\MathsPICperl}{\textsf{MathsPIC}V,
\kern-0.08em\raisebox{-0.15em}{\textit{\tiny Perl}}}

\input prepictex
\input pictexwd
\input postpictex

\thispagestyle{empty}/, stop page numbers
\endinput

Dot

%% End of file ‘mathspic.sty’.

2.8 Error-messages

A certain amount of syntax checking is performed by mathsPIC, and error-messages
are written to the main output-file (.mt file) and also to the log-file (.m1g file).

A copy of the line containing an error is prefixed by %J #***; the associated error-
message appears on the next line and is prefixed by dots (%% . ..). Note that if the -c
switch (clean) is used (see above), then error-messages appear only in the log file. If the
-b switch is used then a beep is sounded if an error occurs during processing.

Runtime errors most commonly arise when an argument has been omitted, or
division by zero has been attempted. Syntax errors arise when mathsPIC commands are
written incorrectly (e.g. missing bracket, or a command being spelled incorrectly).

The following lines show some typical examples with respect to a draw command
if a point has not been previously defined resulting in a ‘point-name’ error:

%% drawline (AB)

%% ***x Line 15: drawline(AB
YAAEL TS)

%% ... Error: Undefined point B

Some other examples of error-messages are as follows.

%% drawline ()
%% **% Line 22: drawline(
VAR LT)

%% ... Error: Wrong number of points

%% ***x Line 49:
Do Kk pointt (K2){4,6}
%% ... Error: command not recognized

CHAPTER 2. RUNNING MATHSPICpggi. 12

%% drawline (PQ)
%% *** Line 52 : drawline(PQ
VAR T)

%% ... Error: points P and Q are the same

Since an error often has an effect on the processing of later commands in the script
(mathsPIC file), a single error can result in a cascade of error messages. In other words,
the number of error messages is not a good guide to the number of errors—there may
only be one small typo causing all the error messages.

2.9 Log-file

mathsPIC outputs a log-file (.m1lg file) which contains details of all errors, relevant
line numbers and file names. The format was designed to match that of a standard TEX
log-file in order to be compatible with commonly used error-checking utilities.

For example, in the following code the errors in the 2nd, 3rd and 4th lines (combined
with the fact that point B has not been defined) generate the error messages found in the
associated log file (.m1g file) below.

%% test.m

point (A){5,5}

var d=

drawline (AB

var j=

text (B){B, shift(d,0)}

The log file (.mlg file) shows the following:

2011/05/29 14:42:41

mathspic (Perl version 1.13 Apr 26, 2010)

Copyright (c) 2005-2010 A Syropoulos & RWD Nickalls
Input file = test.m

Output file = test.mt

Log file test.mlg

Line 3: var d=
**x*Error: Unexpected token
Line 4: drawline(AB
**x*xError: Undefined point B
Line 4: drawline(AB
*xxError: Wrong number of points
Line 4: drawline(AB
x**xError: Missing) after arguments of
Line 5: var j=
**x*xError: Unexpected token
Line 6: text(B){B
, shift(d,0)}
*x*Error: undefined point/var

Chapter 3

The mathsPIC script file

All commands for generating a diagram (the script) are written to a plain ASCII file,
known as the mathsPIC file, using a text editor in the usual way. This file is then
processed by the mathsPIC program (mathspic.pl) as described in the previous
chapter. While the mathsPIC file can of course have any filename and extension, in
this manual all mathsPIC files have the filename extension of .m in order to distinguish
them from the various derived files.

We distinguish three types of command, namely (a) mathsPIC commands, (b) PICTEX
commands, and (c¢) TgX or IATEX commands. All these commands are detailed in the
subsequent three chapters. Since mathsPIC currently only outputs a TgX file then the
mathsPIC file can also contain appropriate PICTEX, TgX and IATEX commands'.

3.1 mathsPIC style option

Since the style option not only inputs some P[CIEX files but also redefines some of the
PICTEX commands, it is therefore necessary to always use the mathsPIC style option
(mathspic.sty) by using the command

\usepackage{mathspic}

Note that in the file mathspic.sty the line \1let\Linethickness\linethickness},
is placed before inputting pictexwd.tex since both PICTEX and the IATEX picture
environment use the same command name, i.e. \1inethickness.

3.2 Headers and footers

It is particularly useful to include in the mathsPIC file any TgX or I4TEX headers and
footers which would otherwise have to be added manually to the output-file before
[4TEXing the file. For example, a typical format which allows for both IATgX 2¢ and
pdfIATEX processing?, might be as follows (this works nicely with IATEX 2¢, dvips,
ps2pdf, and pdfIATEX in Linux). Note that it is important to load the color package
(see Section 6.4) after mathspic.

"However, it is anticipated that future versions of mathsPIC will be able output PostScript and SVG files,
in which case only mathsPIC commands will be allowed.
>The \ifx...\else...\fi sequence is from science.sty (available on CTAN).

13

CHAPTER 3. THE MATHSPIC SCRIPT FILE 14

Note also that the IATiEX command \thispagestyle{empty} is included for con-
venience in mathspic. sty in order to stop a page number appearing in a figure (see
Section 2.7 for details).

\documentclass[ad4paper]{article}
\usepackage{mathspic,color}
\begin{document}

\beginpicture

\endpicture
\end{document}

For users of plain TEX a typical format might be as follows. Note the need in this
case to include the line redefining the \1inethickness command (in mathspic.sty)

\input latexpic.tex

\let\Linethickness\linethickness) %% redefinition for mathsPIC
\input pictexwd.tex

\font\tiny=cmr5 %% used for drawing lines
\font\large=cmri2 %% used for drawing thicklines

\beginpicture

\endpicture
\bye

If it is necessary (or just convenient) to extend a TgX or IATEX command across
several lines, then each additional line must be protected within the mathsPIC file using
a leading \... sequence unless a line actually starts with a TEX command. A typical

example is the following macro (used in Figure 7.6) which defines a ‘display’ maths
formula. The macro is split across several lines, as follows.

\newcommand{\formula}{%

\ $\displaystyle \sum_{p\geO} \Delta_{jp} z~{(p+1)}$%
\ YA
text (\formula){B1}

Important: Note that when using TgX or IATEX commands within the PICTEX picture
environment (\beginpicture ... \endpicture), it is very important to include the
comment % symbol at the end of such lines, to prevent PICTEX accumulating additional
<space> characters from the ends of non-P[CTEX commands, since otherwise PICTEX
incorporates such space characters into the horizontal distance used for representing
x-coordinates, with the effect that all subsequent picture elements may be displaced
slightly to the right.

This effect relates to how TgX expands macros, as explained in the following texhax
comment by Philip Ratcliffe (May 8, 2007).

. a reasonable rule-of-thumb is to put a comment (%) at the end of every line
that would otherwise end with a right brace (}). That is, write

CHAPTER 3. THE MATHSPIC SCRIPT FILE 15

\typeout{Hello World}/,

To be more explicit, a simple command with no parameters, such as \par, \else,
\centering, will always eat the following space while, say,

\typeout{Hello World}, will not (i.e., the space will remain as a physical space
in your output). An the end-of-line character is always interpreted as a space.

For other TgX and I4ATEX commands useful in mathsPIC see Chapter 6.

3.3 Commands

The idea underlying the mathsPIC file (input-file) is that it should be able to contain
everything required to generate the proposed figure (i.e. all mathsPIC commands,
comments, TgX and IATEX commands including headers and footers, PICIEX commands,
as well as lines to be copied verbatim) so that the output-file can be immediately TgXed
to generate the graphic. Some general points relating to the mathsPIC file are as follows.

e mathsPIC commands are not prefixed by backslashes. They are therefore easily
distinguished from TgX, I4TgX and PICTEX commands.

e Each mathsPIC command must be on a separate line. This is because mathsPIC
frequently adds data to the end of a line in the output-file (see below).

e As with TgX, spaces can be used to enhance readability. This is particularly useful
when writing lists of points. For example the command drawpoint (PQR1R2)
can be made easier to read by writing it as
drawpoint(P Q R1 R2).

e mathsPIC commands and point-names are not case sensitive. This allows the
user to customise the commands to enhance readability. Thus the command
drawpoint can therefore be written as drawPoint or DrawPoint etc.

e Delimiters have a hierarchical structure as follows:
Curved brackets contain the primary argument; e.g. drawline (AB)
Braces contain required supporting arguments; e.g. point (A){5,6}
Square brackets contain optional arguments;
e.g. point (D) {midpoint (PQ) } [symbol=\odot]

e Logically distinct groups within brackets must be separated by commas.
e.g. point (B2) {A,polar(3,40deg)} [symbol=\odot, radius=2]

e Comments are prefixed by the % symbol in the usual way. Lines having a leading
% symbol are copied verbatim through to the output-file.

e Lines having a leading backslash command (i.e. where there is no inter-word
space immediately following the backslash, e.g. \setdashes or
\begin{document}) are copied verbatim through to the output-file. Conse-
quently, all TeX, IATgX and PICIEX commands can be used in the normal way
providing the command is restricted to a single line. However, if such com-
mands do run on to the subsequent lines, these lines will need to be prevented
from being processed as mathsPIC commands, by prefixing them with \, (see
below)—unless of course they also start with a backslash command.

CHAPTER 3. THE MATHSPIC SCRIPT FILE 16

e Lines having a leading \, (i.e. where the \ is followed immediately by one or
more inter-word spaces , e.g. \ 25.3 16.8) are copied verbatim through to
the output-file without the leading backslash.

e Data-files containing mathsPIC commands can be input using the inputfile ()
command. Files can also be input verbatim using the inputfile* () command
(useful for inputting files containing only P[CIEX commands and/or coordinate
data; for example, a list of data points as part of a PICIEX \plot command).

e The system() command gives access to the command-line.

3.4 Macros

MathsPIC currently allows macros consisting of a single command, either with or
without parameters. (see Section 4.1.1). MathsPIC macros are subject to a number of
rules as follows:-

e Macros are created using the %,def command, and destroyed using the %undef
command.

e When a macro is used in a command then the macro-name must have a & prefix
(to distinguish it as a macro).

e Macro names are case-sensitive (unlike all other mathsPIC command-names
which are not case sensitive)

e Macros must evaluate to a ‘numerical expression’ (see Section 4.2) (i.e. not to
strings).

It is strongly recommended that a % is placed at the end of the macro definition (as
is done with I4TEX commands) in order to prevent PICTEX from including additional
horizontal whitespace.

No parameters

Examples of macros which do not take any parameters are the following two commands
which create the two macros fancydashes and plaindashes.

%def fancydashes() dasharray(lpt,2pt,3pt,4pt)%
%def plaindashes() dasharray(ipt,1pt)%

Note that in the macro-definition command the curved bracket (the parameter bracket)
at the end of the word fancydashes () remains empty if there are no parameters. This
pair of curved brackets marks the end of the command-name and the beginning of the
macro definition (i.e. some mathsPIC commands).

To use the macro (as a command) it is necessary to use the & prefix. The () brackets
are only necessary if the macro takes parameter(s), as follows.

&fancydashes
drawline (AB)
&plaindashes
drawline (PQ)

CHAPTER 3. THE MATHSPIC SCRIPT FILE 17

The macro fancydashes () is deleted using the following command.

%undef fancydashes()

Single parameter
An example of a macro taking a single parameter is as follows:
%def thick(t) linethickness(t pt)%

Here the command &thick(2) is equivalent to the command linethickness(2pt).

Multiple parameters

An example of a macro taking multiple parameters is as follows:
%def mypoint(P,x,y) point(P){x,y}%

If we now write the command &mypoint (Q7,3,5) this command will be processed to
generate the point Q7 as shown in the following comment in the output file.

%% point (Q7){3,5} Q7 = (3, 5)

It is anticipated that the macro facility will be upgraded in subsequent versions of
mathsPIC to allow a multi-line macros facility.

3.4.1 Macro library

It may be useful to create a file for storing frequently used mathsPIC macros, say, the
text file mathspic.1ib (see more on macros in Section 4.1). For example, we could
put together some of the macros described above into one file as follows:

%%-—— mathspic.lib-—-

%def fancydashes() dasharray(lpt,2pt,3pt,4pt)%
%def plaindashes() dasharray(lpt,1ipt)%

%h%--- end of library ---

and input the file at the start (for processing by mathsPIC) by placing the command
inputfile(mathspic.lib) in the mathsPIC file just after \begin{document}.

3.5 The plotting area

3.5.1 Axes

When drawing a new figure it is often useful to have a graduated ruled frame to guide
placement of picture elements. This task is greatly simplified by using mathsPIC’s
one-line paper command, which has optional axes and ticks parameters’. The axes-
codes used in the axes () option are L (Left), R (Right), T (Top), B (Bottom), X (X-axis),
Y (Y-axis). For example, the following paper command generates a drawing area 5 cm
x 5 cm with a ruled frame on four sides as shown in Figure 3.1a.

3Since PICTX uses the name ‘axis’, mathsPIC recognises both spellings (‘axis’ and ‘axes’).

CHAPTER 3. THE MATHSPIC SCRIPT FILE 18

paper{units(lmm) ,xrange(0,50) ,yrange(0,50) ,axes(LRTB) ,ticks(10,10)}

This particular paper command® is converted by mathsPIC into the following PICTEX
code in the output-file (.mt file).

\setcoordinatesystem units <imm,imm>

\setplotarea x from O to 50 , y from O to 50
\axis left ticks numbered from O to 50 by 10 /
\axis right ticks numbered from O to 50 by 10 /
\axis top ticks numbered from O to 50 by 10 /
\axis bottom ticks numbered from O to 50 by 10 /

For graphs it is more usual for the axes to be centered on the origin (0,0), and this
is provided for by the XY options. For example, Figure 3.1b was generated using the
following paper command,

paper{units(lcm) ,xrange(-2,3),yrange(-2,3) ,axes(XY) ,ticks(1,1)}
which is converted by mathsPIC into the following PICTEX code in the output-file.

\setcoordinatesystem units <ilcm, lcm>

\setplotarea x from -2 to 3, y from -2 to 3

\axis left shiftedto x=0 ticks numbered from -2 to -1 by 1
from 1 to 3 by 1 /

\axis bottom shiftedto y=0 ticks numbered from -2 to -1 by 1
from 1 to 3 by 1 /

The tick-marks associated with an axis can be prevented by using a * after the axes-code
(e.g. axis (LBT*R*) gives four axes but generates tick-marks only on the Left and
Bottom axes). Note that any combination of axes-codes can be used. For example, the
options ...axes (LRTBX*Y*), ticks(10,10) will generate a rectangular axes frame
(with ticks) containing the XY axes (without ticks). The line-thickness of axes and
tick-marks is controlled by the PICTEX \1inethickness command.

Once the figure is finished, then the frame or axes can be easily adjusted or even
removed. The figure can also be scaled in size simply by altering the units parameters.
For example, the option units (3cm, 1cm) will generate an X-axis having three times
the scale as the Y-axis (see Figure 7.11). If complicated or more demanding axis
configurations are required, then the PICTEX Manual (see Section E.6) will need to be
consulted. See also Chapter C for details on positioning figures within IATEX documents.

“Note that the order of the units(), xrange(), yrange(), ... etc in the paper () command is
critical, and changing this order will generate an error message. This command will be made more flexible in
future versions.

CHAPTER 3. THE MATHSPIC SCRIPT FILE 19

50 ' ' ' ' 50
40 40
30 30
20 20
10 4 10

0 | | | | 0

a. Using . . .axes (LRTB)

b. Using . . .axes (XY)

Figure 3.1:

CHAPTER 3. THE MATHSPIC SCRIPT FILE 20

Example

Sometimes it is useful to use axes with a different scale in order to accommodate, say,
an equation, as shown in the following example, where we have to specify the two
Y-values and their positions on the axis.

\documentclass[ad4paper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture
\setsolid
%% compress Y scale to fit equation onto paper
var u=1, v=0.075
paper{units(u cm, v cm), xrange(-4,5), yrange(-50,10), axes(XY), ticks(1,0)}
%% place values at ends of the Y-axis
\axis left shiftedto x=0
\ ticks withvalues $-50% 10 /

\ at -50 10 /7
\endpicture
\end{document}
10
r T T T T T T T 1
-4 -3 -2 -1 1 2 3 4 5

—50 4

3.5.2 Second y-axis

Sometimes a second (different) y-axis is needed (on the right). An example of how this
can be achieved is as follows.

paper{units(lcm) ,xrange(0,6) ,yrange(72,77) ,axes(LBT*) ,ticks(1,1)}
\axis right

\ label {\lines {weight\cr (1bs)\cr {\ X\cr {\ } }}

\ ticks withvalues O i 2 3 4 5 /

\ at 72 73 74 75 76 717/ /

CHAPTER 3. THE MATHSPIC SCRIPT FILE 21

Table 3.1: Conversion factors for the units used by IXTEX.
From: Beccari 1991 (with permission).

mm cm pt bp pc in dd cc sp

1 mm 1,000 0,100 | 2,845 2,835 0,2371 | 0,03937 2,659 0,2216 186 467,98
lcm 10,00 1,000 | 28,45 28,35 2,371 0,3937 26,59 2,216 | 1864679,8
1pt 0,3515 | 0,03515 | 1,000 | 0,9963 | 0,08333 | 0,01384 | 0,9346 | 0,07788 65536
1bp 0,3528 | 0,03528 | 1,004 1,000 | 0,08365 | 0,01389 | 0,9381 | 0,07817 65781,76
1pc 4,218 0,4218 | 12,00 11,96 1,000 0,1660 11,21 0,9346 786432

lin 25,40 2,540 | 72,27 72,00 6,023 1,000 67,54 5,628 | 4736286,7
1dd 0,3760 | 0,03760 | 1,070 1,066 | 0,08917 | 0,01481 1,000 | 0,08333 70 124,086
lcc 4,513 0,4513 | 12,84 12,79 1,070 0,1777 12,00 1,000 841489,04

3.5.3 Units

In addition to the usual units mm, cm, and pt, PICTEX accommodates all the other units
used by TgX (see Knuth (1990), Chapter 10), and also uses the same two-letter codes,
namely pc (pica), in (inch), bp (big point), dd (didot), cc (cicero), sp (scaled point).
The available units thus embrace the Metric system (mm, cm), the Didot system (didot,
cicero), and the UK system (point, big point, pica, inch)—see Table 3.1.

Note that if only one unit is indicated in the units option, then mathsPIC uses the
same unit for both the x and y axes. Thus the option units (1mm) in the paper command
is translated by mathsPIC into the following PICTEX command in the output-file. Note
that it is very important to include a numeric value with the units, or alternatively a
variable with the units.

\setcoordinatesystem units <imm,imm>

If different scales are required (most commonly when drawing curves and equations)
then both need to be specified in the mathsPIC units option. For example, if units
of 1 cm and 2 mm are required for the x and y axes respectively, then this will be
implemented by the mathsPIC command units(1cm,2mm). However, when the x and
y scales are different strange effects can occasionally occur, particularly if drawing
ellipses or circular arcs. In view of this mathsPIC writes a warning note to the output-
file and log-file when different units are being used. The drawing of complete circles
will only be affected if the x-units is changed, since the mathsPIC starts the arc at a
location having the same y-coordinate as that of the center. In general users are therefore
recommended to avoid using different x and y units in the paper command if at all
possible.

Note that variables can also be used to control the x and y units, as shown in the
following example, where the radius (r) and the distance (s) between the label A and its
point-location are fixed irrespective of scaling (i.e. with changes in the value of u) by
dividing the relevant variables by the scaling value u.

var u = 1.5 %% units
paper{units(u mm), xrange(0,100), yrange(0,100)}

var r =2/u, s = 4/u
point (A){30,20} [symbol=circle(r)]
text (A){A, shift(-s,s)}

CHAPTER 3. THE MATHSPIC SCRIPT FILE 22

3.5.4 Tick-marks

It is recommended that integers are used with the ticks () option; the numeric format
for the ticks () arguments must agree with that used by the xrange () and yrange ()
arguments. For example, if the paper () command uses xrange(-5.5,5.5) then the
ticks () option should also use decimals, perhaps ticks (1.0, 1.0). If this rule is
not adhered to then PICTEX may sometimes give unpredictable results when executing
the paper{} command. In general PICIEX gives more pleasing axes if integers are used
throughout the paper command.

3.6 Points

Each point is associated with a point-name which is defined using the point command.
For example, the following command allocates the point-name A to the coordinates
(5,7).

point (A){5,7}

Once defined, points can be referred to by name. Consequently, points can be defined in
relation to other points or lines simply by using point-names, as shown by the following
commands.

point (C){midpoint (AB)}
point (E) {intersection(AB,CD)}
point (1) {Q, rotate(P, 25 deg)} %% J = Q rotated about P by 25 deg

Points are interpreted according to their grouping and context. Thus two points repre-
sent either a line or its Pythagorean length. For example, the command drawCircle (P, AB)
means draw a circle, center P with radius equal to the length of the line AB. A group
of three points represents either a triangle, an angle, or two contiguous line-segments,
depending on the circumstances.

3.6.1 Point-name

A point-name must begin with a single letter, and may have up to a maximum of three
following digits. The following are valid point-names: A, B,C3,d185. Since mathsPIC
is not case sensitive the points d45 and D45 are regarded as being the same point.

Sometimes it is necessary to re-allocate new coordinates to an existing point-name,
in which case the point* command is used. This is often used during recursive opera-
tions whereby the mathsPIC file inputs another file (using the inputfile command)
containing commands which alter the value of pre-existing points. For example, the
following command increments the x-coordinate of point A by 5 units.

point*(A){xcoord(A)+5, ycoord(A)}
point (P){Q} %% make P the same as Q

3.6.2 Point-symbol

The default point-symbol is @ (\bullet). However, mathsPIC allows the optional use
of any TgX character or string of characters to represent a particular point, by defining it
in a following square bracket. For example, the point A(5,10) can be represented by the
A symbol by defining it as follows.

CHAPTER 3. THE MATHSPIC SCRIPT FILE 23

point (A) {5,103} [symbol=\triangle]
Other examples using the circle () and square () options are:

point (B){A, shift(2,6)}[symbol=circle(2)]
point (C){A, polar(3,263}[symbol=square(3)]

The argument for the circle is the radius, while the argument for the square is the side
length.

The default point-symbol can also be changed to a circle, square, or any TgX
character or string of characters by using the mathsPIC PointSymbol command. Note
that the PointSymbol command only influences subsequent point commands. For
example, the character ® (\odot) can be made the new global point-symbol by
using the command PointSymbol (\odot). The original default point-symbol (e)
can be re-instituted (reset) using the command PointSymbol (default). The point-
symbol is drawn at the point-location using the drawPoint command; for example,
drawPoint (A), or drawPoint (ABCD).

Since most TEX characters and symbols are typeset asymmetrically in relation to the
baseline, they will not, in general, be positioned symmetrically over a point-location.
Most characters are therefore not ideal for use as point-symbols, as they generally
require some slight vertical adjustment in order to position them symmetrically. In view
of this Table A.2 lists those TEX characters which are particularly suitable, since they
are automatically positioned by TgX symmetrically with respect to a point-location (for
example the ® character \odot), and are therefore ideal for use in this setting.

3.6.3 Line-free zone

When lines are drawn to a point, the line will (unless otherwise instructed) extend to
the point-location. However, this can be prevented by allocating an optional circular
line-free zone to a point by specifying the line-free radius in a following square bracket.
For example, lines to a A symbol at point A can be prevented from being drawn through
the triangle to its center by allocating a 5 unit line-free zone to the point, as follows.

point (A) {3,103} [symbol=\triangle,radius=5]

If only the line-free radius is to be specified for the default point-symbol then we can
use the command pointsymbol (default,5). To change the line-free radius of an
existing point then use the following command.

point*(A){A}[radius=10]
which is equivalent to
point*(A){xcoord(A), ycoord(A)}[radius=10]

Table 3.2 gives a list of useful point-symbols which TEX places symmetrically
over a point-location (note that \Box and \Diamond are not placed symmetrically
over a point location, but \square and $\1lozenge$ are). Other useful symbols are
available from the textcomp fonts> (see also the ‘symbol list’ compiled by Pakin which
shows virtually all the available symbols®).

3See Harold Harders’ useful file (textcomp.tex) which shows the characters of the textcomp font
together with their names. It can be found at CTAN: /tex-archive/info/texcomp-info/.
SCTAN: /tex-archive/info/symbols/

CHAPTER 3. THE MATHSPIC SCRIPT FILE 24

For example, the following commands will draw lines between points ABC, such
that the lines just touch the edge of the ® point-symbol (line-free radius 1.2 mm; 10pt
font).

pointSymbol (\odot, 1.2)
point (A){1,1}
point (B){2,2}
point (C){1,3}
drawline (ABC)

Table 3.2: Useful point-symbols and their radii for 10-12pt fonts.

radius mm
symbol symbol package
10pt/ 11pt/ 12pt
\circ o | 0.70/0.7570.80 standard
\odot ® | 1.20/1.35/1.50 standard
\oplus @ | 1.20/1.35/1.50 standard
\ominus © | 1.20/1.35/1.50 standard
\oslash @ | 1.20/1.35/1.50 standard
\otimes ® | 1.20/1.35/1.50 standard
\bigcirc O | 1.70/1.85/2.05 standard
\bigodot O | 1.70/1.85/2.05 standard
\bigoplus @b | 1.70/1.85/72.05 standard
\bigotimes ® | 1.70/1.85/2.05 standard
\star * — standard
\triangle A — standard
\square U — amssymb.sty
\blacksquare | — amssymb.sty
\lozenge % — amssymb.sty
\blacklozenge ¢ — amssymb.sty
\bigstar * — amssymb.sty
\boxdot Cl — amssymb.sty
\boxtimes X — amssymb.sty
\boxminus H — amssymb.sty
\boxplus H — amssymb.sty
\divideontimes | x* — amssymb.sty

CHAPTER 3. THE MATHSPIC SCRIPT FILE 25

It is often useful to adjust the line-free radius associated with a particular point
before drawing lines or arrows to it, in order to optimise the distance between an object
centered at the point and the line or arrow. For example, one can use the pointx*
command to set a line-free radius of 2 units for a pre-existing point (P), as follows.

point*(P){P}[radius=2]

By way of illustration, this command is used in drawing Figure 3.2 where arrows
are being drawn from various directions (B, S) to a text box centered on point P ® (the
code is shown below as mpicpm03-2.m). By setting the line-free radius (dashed circles)
associated with point P before drawing each particular arrow, one can easily adjust and
optimise the distance between the arrowhead and the text box. The arrowshape used
here is the default shape which is defined as follows (see Section 7.3 for details).

arrowshape (2mm, 30,40)

3 7 <
Ve N \
’/ 7 \ |
24 S e—> [text OP box]
\ \ / !
\ S U7 /
1 I / - /
B AN ’
0 T T ——
0 1 2 3 4 5 6
Figure 3.2:

%% mpicpm03-2.m (Figure 3.2)

\usepackage{mathspic}

\beginpicture

paper{units(lcm) ,xrange(0,6) ,yrange(0,3) ,axes (LBT*R*) ,ticks(1,1)}
point (P){4,2} [symbol=\odot]

point (B){2,0.5}
point (S){1,2}
drawPoint (PBS)
\setdashes
\inboundscheckon
drawcircle(P,1)
drawcircle(P,2)
\setsolid

%% change line-free radius
point*(P){P}[radius=1]

Dot

restrict circles to drawing area

of P to 1cm

drawArrow (BP)

Dot

%% change line-free radius
point*(P){P}[radius=2]

drawArrow (SP) %%
text (S){S, shift(-0.4,0)}
text (B){B, shift(-0.4,0)}
text (\textsc{p}){P, shift(0

draw arrow from B (below)
of P to 2cm

draw arrow from S (side)

.3,0)%

CHAPTER 3. THE MATHSPIC SCRIPT FILE 26

\newcommand{\textbox}{\fbox{text\hspace{17mm}box}}%
text (\textbox){P}
\endpicture

Of course, sometimes it is convenient just to draw the arrows a certain length from one
point towards another point. For example, in order to draw an arrow 1 unit long from
point A towards point B we could use the following two commands

point (Z){pointonline(AB,1)} % Z is point 1 unit from A towards B
drawArrow (AZ)

3.6.4 Order of points

The order of points in mathsPIC commands is sometimes significant. For example, the
command point (D) {PointOnLine (AB,23)} defines the point D as being 23 units
from A in the direction of B.

3.7 Lines

mathsPIC draws lines using its drawLine and drawThickline commands. For ex-
ample, a line from P; to P; is drawn with the command drawLine(P1P2). If a
line is to be drawn through several points (say, Ji,J2,J3,J4,J5) and can be drawn
without ‘lifting the pen’, then this can be achieved using the single mathsPIC com-
mand drawLine(J1J2J3J4J5). Several unconnected lines can also be drawn us-
ing one command by separating each line sequence with a comma; for example,
drawLine (J1J2,J3J4J5,J1J3).

A line can also be drawn a specified distance from one point towards (or away
from) another point, using the following two-step approach. For example, the following
commands draws a line a distance d units from point A fowards point B.

point (Z){pointonline(AB,d)}
drawline (AZ)

Note that the order of the points AB and the sign of the distance d are important. For
example, the following commands will draw a line a distance d units from point B away
from point A.

point (Z){pointonline(BA,-d)}
drawline (BZ)

Since the PICTEX \putrule command for drawing horizontal or vertical lines is much
more memory efficient than the \plot command, mathsPIC automatically invokes the
\putrule command for horizontal and vertical lines.

3.7.1 Line thickness
mathsPIC

mathsPIC uses the linethickness () command. For example, to switch to a linethick-
ness of 2pt we would use the mathsPIC command

linethickness(2pt)

CHAPTER 3. THE MATHSPIC SCRIPT FILE 27

The default value is 0-4pt, and resetting to this value is achieved by the following
command

linethickness(default)

Sometimes when drawing thick lines it is useful to be able to manipulate the line ends
(e.g. when drawing shapes with horizontal and vertical lines). Consequently it is useful
to be able to access the numeric value of the current linethickness (in the units defined
by the paper command), and this can be done using the var command as follows.

var t = _linethickness_

The mathsPIC drawLine () command uses the current dot size. However, the
mathsPIC drawThickline () command uses the \large dot size, but then resets the
dot size to the default \tiny. For example, the commands

point (A){5,5}
point (B){10,10}
drawThickline (AB)

will result in the following code in the output-file.

%% point (A){5,5} (5,5)

%% point(B){10,10} (10, 10)

%% drawThickline (AB)

\setplotsymbol ({\usefont{0T1}{cmr}{m}{n*\large .})%

{\setbox1=\hbox{\usefont{0T1}Hcmr}{m}{n}\large .}%
\global\linethickness=0.31\wd1}}

\plot 5.00000 5.00000 10.00000 10.00000 / %% PQ

\setlength{\linethickness}{0.4pt}%

\setplotsymbol ({\usefont{OTiHcmrI{m}I{n*\tiny .})%

PICTEX’

PICIEX draws lines using two different methods depending on whether the lines are
(a) horizontal or vertical, (b) any other orientation. Furthermore these two groups use
different commands for controlling line-thickness, as follows.

Horizontal and vertical lines (rules): Horizontal and vertical lines are drawn
using the PICTiEX \putrule command® and consequently the thickness of such lines is
controlled by the PICTEX
\linethickness command (the default line-thickness is 0-4pt). For example, the
following PICTEX command changes the thickness to 1pt.

\linethickness=1pt

Note also that the PICTEX \linethickness command can also be reset to its default
value (0-4pt) by the PICTEX \normalgraphs command (see chapter on PICTEX com-
mands), which resets all PICTEX graph-drawing parameters to their default values,
including \1inethickness.

Since the graph axes are drawn using horizontal and vertical lines PICTEX draws
them using the \putrule command, i.e. using the \linethickness command. For
example, the following commands can be used to draw thick axes.

7See also Chapter E on PICTEX.
8Note that the PICTEX \putrule command employs the TgX and IATEX \rule command, and so is only
used for horizontal and vertical lines.

CHAPTER 3. THE MATHSPIC SCRIPT FILE 28

\linethickness=2pt
paper{units(lmm) ,xrange(0,50) ,yrange(0,50) ,axes(XY)}
\linethickness=0.4pt %% reset to default

Other lines and curves: P[CIEX draws all other lines (non-horizontal non-vertical)
and curves are drawn using the PICTEX \plot command which draws a continuous
line of dots. Consequently the thickness of these lines is controlled by the size of the
dot, which is defined using the PICTEX \setplotsymbol command, the default size of
dot being {\tiny .}. Larger dots therefore generate thicker lines. For example, the
following PICTEX command sets the dot to a larger size.

\setplotsymbol({\Large .})

3.7.2 Recommendations

In general it is recommended that the mathsPIC 1inethickness () command is used as
this automatically sets both the PICTEX \putrule and \setplotsymbol () commands’.
However, under certain circumstances it may be convenient to set the PICIEX commands
directly, as described below.

If you do use PICIEX commands for drawing lines you need to remember that
since PICIEX uses two groups of commands for controlling the thickness of lines (i.e.
\linethickness and \setplotsymbol) it is important to use pairs of equivalent
commands for ‘rules’ (horizontal and vertical lines) and dots (all other lines) when
changing line-thickness. These are shown in Table 3.3 for a 10-point font (note that the
default sizes are 0-4-point and \tiny).

Table 3.3: Equivalent PICTEX commands for a 10-point font

rules (horizontal/vertical) all other lines

\linethickness=1.35pt | \setplotsymbol({\Large .})
\linethickness=1.1pt \setplotsymbol ({\large .1})
\linethickness=0.9pt \setplotsymbol ({\normalsize .})
\linethickness=0.4pt | \setplotsymbol({\tiny .})

If macros are required, then this can be done easily with a TgX macro using the
PICTiEX commands directly. For example, the following code draws a medium-thick line
AB by invoking the command \mediumthickline.

\newcommand{\mediumthickline}{%
\linethickness=1.1pt}
\setplotsymbol({\large .})1}/

\mediumthickline¥
drawline (AB)

9See Section 3.7

CHAPTER 3. THE MATHSPIC SCRIPT FILE 29

3.8 Text

Text is typeset using the text command and, by default, is centered both horizontally
and vertically at a defined point. For example, the words ‘point Z’ would be placed at
the point Z using the command text (point Z){Z}.

Text can be located relative to a point-location using the shift (dx,dy) orpolar(r,0)
commands. For example, points P; P>, P; could have their labels located 4 units from
each point as follows.

var d = 4

text (P_1){P1,shift(-d4,0)}

text (P_2) {P2,polar(d,10 deg)}

text (P_3) {P3,polar(d,0.29088 rad)}

Optionally, text can be positioned relative to a given point using appropriate combina-
tions of the case sensitive PICIEX options 1 t r B b to align the left edge, right edge,
top edge, Baseline, bottom edge of the text respectively, as described in the PICTEX
manual. For example in the diagram below (Figure 3.3) the text box is
aligned such that the right edge of the text box is centered vertically at the point P using
the [r] option as follows.

point (P){25,5%}
text (\fbox{a nice box}){P}I[r]

\

this is point P

Figure 3.3:

The mathsPIC code for Figure 3.3 is as follows.

%% mpicpm03-3.m (Figure 3.3)
\usepackage{mathspic}
\framebox{\vbox{

\beginpicture

paper{units(lmm) ,xrange(0,28) ,yrange(0,10)}
point (P){25,5} [symbol=\bullet,radius=2]
text (\fbox{a nice box}){P}[r]
drawpoint (P)

point (J){P,polar(15,-20deg)} [radius=2]
text(this is point P){J}[1]

drawarrow (JP)

\endpicture

S —

\ }} %% end of framebox

Text can also be placed at a point-location (using a DrawPoint command), if the text
is defined as the optional point-symbol (in square brackets) associated with a point

CHAPTER 3. THE MATHSPIC SCRIPT FILE 30

command. Although this is useful in certain circumstances, this method is somewhat
less flexible than the text command, since the drawPoint command centers the point-
symbol vertically and horizontally over the point-location.

3.9 Variables and constants

3.9.1 Scalar variables

Numeric scalar variables are defined using the var name = value command as for
example

var r=6

The name requirement is the same as that for points; an initial (single) letter optionally
followed by a maximum of 3 digits. Sometimes the var command too restrictive as
regards the variable-name, in which case a more intuitive variable-name can be allocated
by using a mathsPIC macro (see Section 3.4). For example, we can allocate the name
WeightInKg to some value, say 22-6 Kg, using the following macro definition (see also
Section 4.1 for other examples).

%def WeightInKg()22.6

However, you have to then remember to use the macro with the & prefix (see Section 3.4).

The value can be either a number (e.g. 4-32 or 63), an existing variable name
(e.g. r3), a pair of point names e.g. AB (i.e. representing the Pythagorean distance
between the two points), or a numerical expression(e.g. 3xk/2). Thus the command
var r3=20 allocates 20 to the variable name r3, which could then be used, for example,
as the radius in the circle command drawcircle(C3,r3).

New values can be re-allocated to existing variable-names using the same var
command.

If it is necessary to use the same letter for a point and a variable (or constant), then
a convenient strategy to to consider using upper case for points and lower case for
variables and constants.

Note that several variables can be allocated in a single statement, as follows:

var r=6, j22=rx6/5, d=180

3.9.2 Scalar constants

Constants can be allocated using the const command as follows. A constant can be
any numerical expression.

const j26=23.653

If you subsequently try and change the value of a constant, then mathsPIC will issue an
appropriate error message.

3.9.3 Mathematics

All the usual mathematical operations can used with variables (see Section 4.1), both
when defining a variable, and in places where variables can be used as parameters. When
using ‘scientific’ notation mathsPIC allows either e or E; for example, var j25=7E-2
and point (P){3, 2.34e2}. The constants & and e are available as _Pi_ and _e_.
The following are examples of valid commands.

CHAPTER 3. THE MATHSPIC SCRIPT FILE 31

var r = 6, j = r*tan(0.34)/27, d3=AB
point (C){5,5}

drawCircle(C,r/3)

var e=_e_, pl=_Pi_

var j25=7TE-2

var t = _linethickness_

text (P){P, shift(-5.564e-1,0)}

3.9.4 Scientific notation

While mathsPIC does allow the use of the ‘E’ or ‘e’ format of so-called ‘scientific’
notation (see above) it is important to remember that TEX does not, and consequently
this influences how mathsPIC displays small numbers when they appear in the output
file.

One of the curious anomalies of TgX is that it cannot manipulate numeric values
in scientific notation, and will generate an error message whenever it finds the letter E
or e as part of a number. Consequently mathsPIC automatically converts all numbers
destined to appear within a PICIEX command in the output-file into ‘true’ decimal format
(i.e. not E notation). mathsPIC also reduces such numbers to only five decimal places,
and consequently quantities with an absolute value less than 0-00001 are therefore
effectively reduced to zero (0-00000).

This is demonstrated in the following example, where the coordinates s; appear in
the output file in scientific notation when in commented lines, but in decimal notation
in the PICTEX \put. .. commands. Note also that in this example the y-coordinate of
J4s appears as zero in the \put ... command but as 2.32857142857143e-06 when
shown as the value s5.

var r = 163/7, si=r/1E3, s2=r/1E4, s3=r/1E5, s4=r/1E6, sb=r/1E7
point (J12){s1,s2}

point (J23){s2,s3}

point (J34){s3,s4}

point (J45){s4,s5}

drawpoint (J12 J23 J34 J45)

appears in the output file as

%% var r=163/7, sl=r/1E3,s2=r/1E4,s3=r/1E5,s4=r/1E6,s5=r/1E7
%h r = 23.2857142857143

%% s1 = 0.0232857142857143

%% s2 = 0.00232857142857143
%% s3 = 0.000232857142857143
%% s4 = 2.32857142857143e-05

%% sb = 2.32857142857143e-06
%% point(J12){s1,s2} J12
%% point(J23){s2,s3} J23
%% point(J34){s3,s4} J34 (0.00023, 0.00002)
%% point (J45){s4,sb} J45 (0.00002, 0.00000)
%% drawpoint(J12 J23 J34 J45)

\put {\bullet} at 0.02329 0.00233 %% J12
\put {\bullet} at 0.00233 0.00023 %% J23
\put {\bullet} at 0.00023 0.00002 %% J34

(0.02329, 0.00233)
(0.00233, 0.00023)

CHAPTER 3. THE MATHSPIC SCRIPT FILE 32

\put {\bullet} at 0.00002 0.00000 %/ J45

Note that in practice one could write a Perl subroutine to check and filter out
occurrences of unwanted E characters. For example, as when out-putting graph data in
the form of (x,y) data-pairs to a file.

3.10 The LOOP environment

This operates as a simple ‘DO...LOOP’ allowing a chunk of code to be input multiple
times. It takes a single argument, namely the loop number. The commands for this
environment are as follows.

beginloop (expr)
endloop

When using a ‘DO-LOOP’ one usually has to initialise some parameters, and then
increment the parameters with each passage of the loop. In particular, it is often
convenient to use a loop counter so that one can see in the output file which particular
loop is being processed at any stage. It is also useful to include an obvious marker at

the beginning and end of the repeated section. All these are included in the following
code which produces Figure 3.4 by inputting a section of the code 40 times.

%% mpicpm03-4.m (Figure 3.4)
\usepackage{mathspic}

\beginpicture
paper{units(imm), xrange(0,60), yrange(0,60) axes(LB), ticks(10,10)}
point(S){7,55} 7% Start position
drawpoint (S)
%% initialise parameters
var n=0 % initialise mathspic counter
var a=-180 Y start angle degrees
var d=50 % start length
beginLOOP 40 % loop 40 times
var n=n+l, a = a+90, d = d-1 %) increment counter, angle, length
point*(P){S,polar(d,a deg)} ’ generate new point P
drawline(SP) % draw line from OLD S to NEW P
point*(S){P} %% reallocate S <-- P
endLOOP
drawpoint (P)
\endpicture

CHAPTER 3. THE MATHSPIC SCRIPT FILE

60

50

40

30

20

10

| | | |
10 20 30 40

Figure 3.4:

50

60

33

Chapter 4

mathsPIC commands

All mathsPIC commands (except macros) are case-insensitive. This is a design feature
which allows the user to customise the commands and make them easier to read.
mathsPIC macros, however, are case-sensitive, but since macro-names are created
by the user they are customised from the outset by definition.

The arguments of mathsPIC commands are either strings (any legitimate TgX or
IATEX commands or characters which can be put into an \hbox), point-names (e.g. A,
B2, C345), or numerical expressions. Where appropriate, mathsPIC allows scalar
quantities in commands to be represented by either a numeric value (e.g. 0-432), a
variable name (e.g. 12), two point names representing the Pythagorean distance between
two points (e.g. AB), or even a mathematical expression!. For example, the structure of
the command DrawCircle ({(centre),(radius)) is quite flexible, as follows.

point (C){5,5}
drawCircle(C,4.32)
drawCircle(C,r2)
drawcircle(C,AB)
drawCircle(C, r3*tan(0.6)/4)

4.1 Mathematics

A leading zero must always be used for decimals whose absolute value is < 1. The
argument of trigonometric functions is in radians. Inverse trigonometric functions return
a value in radians.

¢ Constants:
for w (3-14159...) use _Pi_or _pi_;
for ‘¢’ (2-718281...) use _E_or _e_;
for ‘180/Pi’ use _R2D_;
for ‘Pi/180° use _D2R._;

e Trigonometric functions: (arguments must be in radians)
sin(), cos(), tan(), asin(), acos(), atan()

e Remainder: rem(); e.g. var r = 12 rem(5) — 2

I'See the definition of ‘numerical expression’ in Section 4.2.

34

CHAPTER 4. MATHSPIC COMMANDS 35

e Square root: sqrt(); e.g. var s = sqrt(14)

e Exponentiation: *x; e.g. var j = r**2

e Integer: int(); e.g. var s = int(3.867) — 3

e Sign: sgn() (returns -1, 0, or +1); e.g. var s = sgn(-2.987) — —1

e Line thickness: _linethickness_ (returns current value of the linethickness
in current units); e.g. var t = _linethickness_

e Area of triangle: area(ABC) e.g.var t = area(ABC)

4.1.1 Macros

mathsPIC allows the definition of one-line macros with or without arguments, which
evaluate to a ‘numerical expression’ (see Section 4.2) (i.e. not strings). Macro definition
has the following syntax:

%def (macro-name) ([{parameters)) (macro-code)

where (parameters) is a list of comma separated strings (e.g. x,y,z). Always place a %
symbol at the end of the (macro-code) to limit additonal white space. The (macro-code)
can be optionally delimited using round brackets if necessary to help make it more
readable. Examples of valid macros are as follows:

Y%def two()2% % a macro called two
%def two() (2)%

Once a macro is defined it can be used or it can be undefined. A macro is removed
(undefined) using the %undef command as follows.

%undef (macro-name)

Macros (see Section 3.4) are very useful in mathematics. Remember (a) that if a
macro does not use parameters then the () are not used when part of the command
when it is used as a variable, (b) that the macro-name must have the & prefix when it is
used in a mathsPIC command, and (c) it is very important to place a % symbol at the
end of the macro command in order to stop PICIEX from collecting any following white
space and distorting the diagram.

Macros without a parameter can be very useful since they can be used to allocate
a meaningful variable-name (or constant-name). For example, we can allocate the
variable name Speed0fLight to the value 2-9979 x 108 metres per second” and then
manipulate it as follows.

%def Speed0fLight()2.9979e8), metres/sec
var m=1000, E = m*(&Speed0fLight**2)

Note the use of the & symbol in the var command above. After running the above
commands through mathsPIC the output file would show the allocation of the variable
E as follows.

2Lloyd S (2000). Ultimate physical limits to computation. Nature; 406, 1047-1054 (August 31, 2000).

CHAPTER 4. MATHSPIC COMMANDS 36

%def Speed0fLight()2.9979e8), metres/sec
%% var m=1000, E = m*(2.9979e8**2)

%% m = 1000

%% E = 8.98740441e+19

By way of another example, it is often useful to have meaningful names for the factors
used for converting degrees to radians and vice versa (e.g. d2r, r2d), as provided by the
following two macros (without parameters).

%def d2r()_pi_/180% % degrees to radians
%def r2d()180/_pi_% % radians to degrees

For example, a variable of 30 degrees (say, d30) could be converted to radians (say, r30)
in a var command using the new d2r command as follows (remembering to include the
& prefix for the macro),

var d30=30, r30=d30*&d2r
which is processed via mathsPIC to

%% var d30=30, r30=d30%_pi_/180
%% d30 = 30
%% r30 = 0.523598775598299

Macros which take a parameter can be useful in a slightly different way. For example,
since Perl does not have separate commands for log;o() and log.()—it only has one
log command, namely log() for /og.()—you may wish to define separate commands
to make it easy to distinguish between the two. This is easily done with macros taking a
single parameter as follows.

%def loge(a) log(a)
%def log10(a) log(a)/log(10)%

Now if you type the command &loge (5) in the mathsPIC file you will generate the
value log,(5). Similarly, the command &10g10(3) — logio(3).

4.1.2 Making a macro library

If you regularly use particular macros then these can be easily stored in an ASCII file as
a library (say, mathspic.1lib, as described in Section 3.4.1) as follows.

%%-—— mathspic.lib---

%def loglO(a)log(a)/log(10)%
%def loge(a)log(al¥

%def mod(a)rem(a)’

%hdef d2r() _pi_/180%

%def r2d() 180/_pi_%
%%—-——end of library---

This library file can then be input at the beginning of the mathsPIC script, as follows.

inputfile{mathspic.lib}

CHAPTER 4. MATHSPIC COMMANDS 37

4.2 Command definitions

Names of points, constants and variables

The names of points, constants and variables all conform to the same name convention,
as follows: The name must begin with a single letter (either upper or lower case), and
may have up to a maximum of four’ following digits.

While constants and variables should not have the same name, it is quite possible
for points and variables (and constants) to have the same name. Consequently, it is a
useful rule to arrange for points to have uppercase letters and for variables and constants
have lowercase letters, as follows:

point (P25){0,0}
var a=2, b1360=4
const e=2.17

Numerical expressions

When dealing with commands we will refer frequently to the term ‘numerical expression’
by which is meant either (a) a number (integer or decimal), (b) a numeric variable or
constant (defined using the var or const command), (c) any mathsPIC function, macro,
or mathematical expression which evaluates to a number, or (d) a pair of point names
(e.g. AB) representing the Pythagorean distance between the two points. A leading zero
must be used with decimal fractions having an absolute value less than one. The syntax
of the numerical expression, which we will refer to as (expr) is therefore as follows:
(expr) : := (two-points) | (number) | (variable) | (maths)

Units

When dealing with commands we will refer frequently to the term ‘unit’ by which is
meant one of the valid TgX units (see Knuth (1986) p. 57).

(unit) ::= (mm) | {cm) | (pt) | {pc) | {in) | {dd) | {cc) | (sp)

A unit requires a scalar; for example, in the units () option in the paper{} command
we would write something like paper{units(lcm, 3cm), ..} todefine the scale for
the (x, y) axes etc.

Line thickness

Commands and parameters which control line-thickness are described in Section 3.7.1.

4.2.1 Backslash
e\ | oo |

e Notes

A line having a leading backslash is processed (copied verbatim) slightly differ-
ently depending on whether the character following the backslash is a space or
not.

3From mathsPIC version 1.11 onwards.

CHAPTER 4. MATHSPIC COMMANDS 38

A leading backslash followed by a non-space character tells mathsPIC to copy
the whole line verbatim (including the backslash) through to the output-file (thus
a line leading with the IATEX command \begin{document} will be copied
unchanged).

However, a leading backslash followed by one or more spaces, (e.g. \uy - - .)
tells mathsPIC to copy the rest of the line verbatim through to the output-file, but
without the leading backslash.

4.2.2 ArrowShape

This command defines the shape of an arrowhead, and allows arrowheads to be cus-
tomised (see Section 7.3 for details).
e Syntax
ArrowShape ((expr) [(units)] , {expr) , (expr))
ArrowShape (default)

e Notes

The first parameter is the length of the arrow head itself. If (units) are not given
then the current default units will be applied. The last two parameters are angles
(default is degrees) which define the shape of the arrow head (see Section 7.3 for
details).

The default arrow shape is equivalent to the command Arrowshape (2mm, 30,40).
This default arrowhead shape can be reset using Arrowshape (default) com-
mand.

e Examples

Arrowshape (4mm, 30,60)

var h = 3

Arrowshape ((3*h)mm, 30,60)
drawArrow (AB)

Arrowshape (default)
drawArrow (PQ)

4.2.3 beginLoop ... endLoop environment

—see Loop

4.2.4 beginSKkip ... endSkip environment
—see Skip

4.2.5 Const

The const command is used to define scalar constants.

e Syntax

const (name) = {expr) [, (name) = (expr)] ...

CHAPTER 4. MATHSPIC COMMANDS 39

e Notes

The constant name follows the same naming convention as points and variables
(see Section 4.2). The scalar argument can be any numeric expression. There is
no terminal comma. If a new value is allocated to an existing constant name then
mathsPIC issues an error message.

o Example

const h=b
const r = 20, r4 = r3*tan(0.3)

4.2.6 DashArray

The dasharray command takes an arbitrary number of paired arguments that are used
to specify a dash—gap—dash. .. pattern.

e Syntax
dasharray (DASH, GAP [DASH, GAP] ...)
DASH : : = {expr) (unit)
GAP : := (expr) (unit)

o Notes

There must be an even number of arguments. If a variable or expression is used
then it should be separated from the unit either by a ., or with round brackets ()
as shown below.

Macros are useful for allocating names to frequently used dashArray commands.

e Example

dasharray(6pt, 2pt, 1pt, 2pt)

var d=2

dasharray(6pt, 2pt, 1pt, d pt)

dasharray(6pt, 2pt, 1pt, (d)pt)

dasharray(6pt, 2pt, 1pt, (3*d)pt)

%def fancydashes()dasharray(6pt, 2pt, 1pt, 2pt)¥%

4.2”7 DrawAngleArc

This command draws an arc in the specified angle, a distance radius from the angle.

e Syntax
drawAngleArc{ ANGLE , RADIUS , LOCATION , DIRECTION }
ANGLE : := angle((three-points))
RADIUS ::= radius({expr))
LOCATION ::= internal | external

DIRECTION ::= clockwise | anticlockwise

CHAPTER 4. MATHSPIC COMMANDS 40

e Notes

The angle location is either internal (< 180°) or external (> 180°). The direction
of the arc is either clockwise or anticlockwise, and this direction must correspond
with the letter sequence specified for the angle. Strange and unexpected results
will be produced if the four parameters are not internally consistent. The parameter
order angle/radius/internal/clockwise etc is important.

e Examples

DrawAngleArc{angle(ABC), radius(3), external, clockwise}
var r = 2
DrawAngleArc{angle(PQR), radius(r), internal, anticlockwise}

4.2.8 DrawAngleArrow

This command draws an arrow in the specified angle, a distance radius from the angle.
e Syntax
drawAngleArrow{ ANGLE , RADIUS , LOCATION , DIRECTION }

ANGLE : := angle((three-points))

RADIUS ::= radius({expr))

LOCATION ::= internal | external

DIRECTION : := clockwise | anticlockwise
e Notes

The angle location is either internal (< 180°) or external (> 180°). The direction
of the arrow is either clockwise or anticlockwise, and this direction must corre-
spond with the letter sequence specified for the angle. Strange and unexpected
results will be produced if the four parameters are not internally consistent. The
parameter order angle/radius/internal/clockwise etc is important.

The radius can be any numerical expression.

o Examples

DrawAngleArrow{angle (ABC), radius(3), external, clockwisel}
var r = 2
DrawAngleArrow{angle(PQR), radius(r), internal, anticlockwise}

4.2.9 DrawArrow

This command draws an arrow(s) joining two points.
e Syntax
drawArrow ((two-points) [, (two-points)]...)

e Notes
The direction of the arrow is in the point order specified. The shape of the arrow-

head is controlled by the ArrowShape command (see Section 7.3). Commands
and parameters which control line-thickness are described in Section 3.7.1.

o Examples
drawArrow (AB)
drawArrow(FG, HJ)

angle/radius/internal/clockwise
angle/radius/internal/clockwise

CHAPTER 4. MATHSPIC COMMANDS 41

4.2.10 DrawCircle

Draws a circle with its centre at a given point and with a given radius.

e Syntax
DrawCircle (CENTRE, RADIUS)
CENTRE : : = (point)
RADIUS : := (expr)

e Notes

Note that PICTEX draws circles with the \circulararc command, using a radius
equivalent to the distance from the centre to the point at which it starts drawing
the arc. Consequently, if the units of the x and y axes are different, circles may
be drawn strangely. MathsPIC therefore generates a message to this effect in the
output-file if different units are selected for the two axes in the units command.

o Examples

drawCircle(C2,5)

var r2=3

drawCircle(C2,r2)
drawCircle(C2, (r2/tan(1.2)))
drawCircle(C2,AB)

4.2.11 DrawCircumcircle
Draws the circumcircle of a triangle defined by three points
e Syntax
DrawCircumcircle ((three-points))
o Example

drawCircumcircle (ABC)

4.2.12 DrawCurve

Draws a smooth quadratic curve through three points in the order specified.

e Syntax

DrawCurve ((three-points))

e Notes

This command will be upgraded in the next version to apply to more than three
points.

Note that curves drawn using this command do not break to avoid line-free
zones associated with the points (the drawLine command for straight lines does
acknowledge line-free zones).

e Example

drawCurve (ABC)

CHAPTER 4. MATHSPIC COMMANDS 42

4.2.13 DrawExcircle

Draws the excircle touching a given side of a triangle.
e Syntax
DrawExcircle(TRIANGLE , SIDE)
TRIANGLE : := (three-points)
SIDE : : = (two-points)
o Example
drawExcircle (ABC,BC)

4.2.14 Drawlncircle

Draws the incircle of a triangle defined by three points
e Syntax

DrawIncircle((three-points))

o Example
drawIncircle (ABC)

4.2.15 DrawLine

This command draws a line(s) between sets of two or more points.
e Syntax
drawLine (LINE[,LINE]...)
LINE : : = (two-points) [(point)] ...

e Notes

Lines are drawn in the point order specified. Commands and parameters which
control line-thickness are described in Section 3.7.1.

Note that the drawline command uses the PICTEX \putrule command for
horizontal and vertical lines, and the \plot command for lines of all other
orientations.

e Examples

drawLine (AB)
drawLine(FG, HJ)
var d = 3

4.2.16 DrawPerpendicular
Draws the perpendicular from a point to a line.
e Syntax
DrawPerpendicular((point) , LINE)
LINE : : = (two-points)
o Example
drawPerpendicular (P, AB)

CHAPTER 4. MATHSPIC COMMANDS 43

4.2.17 DrawPoint

Draws a symbol at the point-location.

e Syntax
DrawPoint ((point) [(point)] ...)

e Notes There must be no commas in the list of points (spaces are allowed).

e Example

drawpoint (T4)
drawpoint (ABCDEF)
drawpoint (P1 P2 P3 P4)

4.2.18 DrawRightangle

Draws the standard right-angle symbol in the internal (acute) angle specified. If the angle
is not exactly 90° then mathsPIC draws the required symbol in perspective (i.e., each
arm is still drawn parallel to the respective lines).

¢ Syntax
DrawRightangle ((three-points) , (expr))

o Example
drawRightangle (ABC, 3)

4.2.19 DrawSquare

Draws a square at a given point with a given side-length.
e Syntax
DrawSquare ((point) , {(expr))

e Example

drawSquare(P,5)
drawSquare (P,s2)
drawSquare (P, s2%4/(3%j))
drawSquare (P,AB)

4.2.20 DrawThickArrow

This command draws a thickarrow(s) joining two points.
e Syntax
drawThickArrow ((two-points) [, {two-points)]...)

e Notes

The direction of the arrow is in the point order specified. The shape of the arrow-
head is controlled by the ArrowShape command (see Section 7.3). Commands
and parameters which control line-thickness are described in Section 3.7.1.

e Examples

drawThickArrow(AB)
drawThickArrow(FG, HJ)

CHAPTER 4. MATHSPIC COMMANDS 44

4.2.21 DrawThickLine

This command draws a thick line(s) between sets of two or more points.

e Syntax
drawThickLine (LINE[, LINE] ...)
LINE : : = (two-points) [(point)] ...

o Notes

Lines are drawn in the point order specified. Commands and parameters which
control line-thickness are described in Section 3.7.1.

Note that the drawThickLine command uses the PICTEX \putrule command
for horizontal and vertical lines, and the \plot command for lines of all other
orientations.

o Examples

drawThickLine (AB)
drawThickLine (FG, HJ)
var d = 3

4.2.22 InputFile

Inputs a plain text file containing mathsPIC commands, one or more times.

e Syntax
InputFile((file-name)) [LOOP]
LOOP : := (expr)

e Notes

Optionally, the file can be input [LOOP] times, in which case this command can
be used to implement something akin to a primitive DO—LOOP if the file contains
mathsPIC commands.

See also the LOOP command (a beginLOOP...endLOOP environment).
If LOOP is not an integer then mathsPIC will round the value down to the nearest
integer. Note that the inputfile* command has no [LOOP] option.

o Example

The following command inputs the file newfile.dat 4 times in succession.
inputFile(myfile.dat) [4]

The inputfile* command is used to input a file in verbatim, i.e. a file with
no mathsPIC commands. For example, a file containing only PICTEX com-
mands or data-points for plotting etc. A typical example might be the fol-
lowing file (curve-A.dat) which would be input verbatim using the command
inputfilex(curve-A.dat). (Note that PICIEX requires an ODD number of
points).

CHAPTER 4. MATHSPIC COMMANDS 45

%% curve-A.dat

\setquadratic
\plot
0 0
3.56 4.87
8.45 9.45
5 7
2.34 3.23/
\setlinear

4.2.23 LineThickness

Sets a particular linethickness.

e Syntax
Linethickness ((expr) {(units))

Linethickness (default)

e Notes

This command also sets the font to cmr and plotsymbol to {\CM .}, and also
sets the rule thickness for drawing horizontal and vertical lines. For example
the command linethickness (2pt) results in the following commands in the
output .mt file.

\linethickness=2.00000pt\Linethickness{2.00000pt}%
\font\CM=cmr10 at 9.94451pt%
\setplotsymbol ({\CM .})%

The command linethickness(default) restores the working linethickness to
the default value of 0-4pt.

The current value of linethickness (in the current units as defined in the paper
command) can be accessed as the value _linethickness_ as follows.

var t = _linethickness_

See also—the chapter on PICTEX commands as there is a similar PICIEX command
with the same name (but with a different syntax).

e Example

linethickness(2pt)
linethickness(default)
var t = _linethickness_

4.2.24 Loop environment
This environment cycles a block of code a number of times.

e Syntax
beginLoop (ezpr)...endLoop

CHAPTER 4. MATHSPIC COMMANDS 46
e Notes The block of code which lies within the environment is input (expr) times.
e Example
beginLoop 5
e‘u‘u;lLoop
4.2.25 Paper

Defines the plot area and scale, and optional axes and tick marks.

e Syntax
Paper{ UNITS , XRANGE , YRANGE , AXES , TICKS }
UNITS ::= units((expr) (units) [, (y-expr) (y-units) 1)
XRANGE : := xrange ((low-expr) , (high-expr))
YRANGE : := yrange((low-expr) , (high-expr))
AXES ::= axes ([(L)[*]] [(R)[*]] (T)[x]] [(B)[*]] [{X)[*]] [(Y)[*]])
TICKS ::= ticks((x-expr) , (y-expr))
e Notes

The following statement sets up a rectangular drawing area 5 cm X 5 cm with
axes on the Left (y-axis) and Bottom (x-axis), and tick marks at 1 cm intervals.
Note that the order of the options units() . . .ticks () MUST adhere to the order
shown here (this will be made flexible in a later version).

paper{units(lcm) ,xrange(0,5) ,yrange(0,5) ,axes(LB) ,ticks(1,1)}

All combinations of the axis-codes (XYLRTB) are allowed, and a * following an
axis-code (e.g. L*) disables the drawing of ticks on the specified axis.

If it is necessary to have different unit scales for the x and y axes, say 1 cm and
2 mm respectively, then this is implemented by units(lcm,2mm). If only a
single unit is specified (e.g. units (3cm)) then mathsPIC automatically makes
this the unit scale for both axes. If the unit option is omitted PICTEX will use the
last defined units (within the same picture environment), the default units being
xunit=1pt and yunit=1pt (see the PICTEX Manual, page 3; Wichura, 1992).

If different units or different sizes of the same unit are used for the x and y scales
then mathsPIC issues a warning message to this effect (since strange effects arise,
e.g., with circles, ellipses & angles, when the x and y axes are scaled unequally).
Note that the modern rectangular thin computer screens may also ‘stretch’ circles
sideways, depending on the setup, in a way not seen when the image is printed.

o Example

paper{units(lcm) ,xrange(0,10) ,yrange(0,10) ,axes(XY)}

var j=5

paper{units(lcm) ,xrange(0, j) ,yrange(0,5) ,axes (LBT*#R*) ,ticks(1,1)}
var u = 3

paper{units((u)mm) ,xrange(0,50) ,yrange(0,50) ,axes (LBTB)}

CHAPTER 4. MATHSPIC COMMANDS 47

4.2.26 Point

Allocates coordinates to a point-name. A point name must begin with a single letter
(either upper or lower case), and may have up to a maximum of four* following digits,
e.g., P1326.

e Syntax
Point [*1 ((point)) { (point) } [OPTION [, OPTION]]
Point [*] ((point)) { LOCATION } [OPTION [, OPTION]]
LOCATION : := (x-expr) , {y-expr)
LOCATION : := xcoord((point)) , ycoord((point))
LOCATION : :=midpoint ((two-points))
LOCATION : := intersection((rwo-points) , (two-points))
LOCATION : :=PointOnLine((point) , (expr))
LOCATION : := perpendicular ({point) , (two-points))
LOCATION : := Circumcirclecenter ((three-points))
LOCATION : := Incirclecenter ((three-points))
LOCATION : :=Excirclecenter ((three-points) , (two-points))
LOCATION : := (point) , POINT-FUNCTION
POINT-FUNCTION : := shift ((x-expr) , (y-expr))
POINT-FUNCTION : :=polar ((r-expr) , (0-expr))
POINT-FUNCTION : := rotate((point) , (6-expr))
POINT-FUNCTION : := vector((two-points})
OPTION : := symbol = CHARS | radius = (expr)

CHARS ::= (string) | square((expr)) | circle((expr))

e Notes

The default point-symbol is the \bullet. An optional alternative point-symbol
(or string of characters) can be specified within square brackets, as for example:
[symbol=\triangle]

By default lines drawn to a ‘point’ are drawn to the point location. However, the
radius of an optional line-free zone (line-free radius) can be specified within an
optional square bracket e.g. [symbol=\triangle,radius=2]. A line-free
radius option can be specified by itself, for example [radius=2].

The polar(r,theta) defaults to radians for the angle theta. If degrees are
required then need to append < deg >; e.g. polar(r,theta deg). Note that
direction() or directiondeg() can be used instead of theta, as for example:
point (D4){D2, polar(6,direction(AB))} (see also the Examples at the
end on the following page).

An optional symbol=circle() or symbol=square() can also be used as the
symbol. In these cases a numeric expression is required as the argument, and is
taken to be the side length (for square()) or circle-radius (for circle()). If

4From mathsPIC version 1.11 onwards.

CHAPTER 4. MATHSPIC COMMANDS 48

a radius (expr) is also included then the square will have associated with it a
line-free radius of the specified value, e.g., [symbol=square(2), radius=5];
and similarly if the symbol is a circle.

Note (1) there must be a comma between the options, and (2) the options are not
order specific. If no line-free radius value is specified, the line-free radius used is
the current (default) value).

Points can also be defined relative to previously defined points. For example,
as the intersection of two existing lines, or as a +ve or —ve extension (in the
direction indicated by the letters) between two previously defined points, (e.g. the
PointOnLine () construction).

If the command point () {} is used to reallocate new parameters to an existing
point-name then mathsPIC will generate a warning message indicating that an
existing point-name is being reallocated. For example, the following code

point(S){6,6}
point (8){7,7}

will generate the following warning message in the output file, but still reallocate
the point-name.

%% point(8){6,6+ S = (6, 6)

%% *** Line 15: point(S

Tty Hkk){7,6}

%% ... Warning: Point S has been used already
%% point(8){7,6+ S = (7, 6)

The point* command allocates parameters to a point-name irrespective of
whether that point-name has been previously defined or not. Thus in the above
example, the reallocation proceeds without any warning message at all, as follows

%% point(S){6,6r S = (6, 6)
%% pointx(S){7,6} S = (7, 6)

o Examples

point (A){5,5}

point (B2){22,46} [symbol=\odot]

point (B2){22,46} [symbol=circle(2) ,radius=5]
point (B2){22,46} [symbol=square(3) ,radius=5]
point (B2) {22,463} [radius=5]

point (D2){B2, shift(5,5)}

point (D3){D2, polar(6,32 deg)}
point(D4){D2, polar(6,1.2 rad)}
point(D4){D2, polar(6,direction(AB))}
point (D4){D2, polar(6,directiondeg(AB)deg)}
point(G2){Q, rotate(P, 23 deg)}

point (J4){B2, vector(AB)}

point (D2){midpoint (AB)}

point (D2){intersection(AB,CD)}

point (F){PointOnLine (AB,5.3)}

CHAPTER 4. MATHSPIC COMMANDS 49

point (G) {perpendicular(P,AB)}

point (H) {circumcirclecenter (ABC)}

point (J){incirclecenter (ABC)}

point (K) {excirclecenter (ABC,BC)}

point*(A){6,3}

point*(B){B, shift(5,0)}

point*(P){J} %% make J have the same coords as P
point*(P){xcoord(J),ycoord(J)} %) same as Point*x(P){J}

4.2.27 PointSymbol
Sets a particular point-symbol and line-free radius.

e Syntax
pointSymbol ((chars) , {expr))
pointSymbol (square({expr)) , (expr))
pointSymbol (circle({expr)) , (expr))

e Notes
This command allows the default point-symbol (\bullet, line-free radius

zero) to be changed. The square option takes the side-length as argument. The
circle option takes the radius as argument.

The PointSymbol command is particularly useful where a set of points uses the
same point-symbol, and also when drawing graphs.

For example, the following command changes the point-symbol to ® having a
line-free radius of 0-7 units.

PointSymbol (\odot, 0.7)

Note that the PointSymbol command only influences subsequent point com-
mands, i.e., it should be placed before the defining point command. The optional
square bracket of the point command overrides the PointSymbol command. The
point-symbol can be reset to the default (\bullet, zero line-free radius) using
the command PointSymbol (default).

o Example

PointSymbol (\odot, 0.7)
PointSymbol (square(4), 5)
PointSymbol(circle(3), 3)

var r = 1.2

PointSymbol (\triangle, 0.7)
PointSymbol(circle(r), r)
pointSymbol (default)

4.2.28 Skip environment

This is an environment within which commands are not actioned.

e Syntax
beginSKIP. . .endSKIP

CHAPTER 4. MATHSPIC COMMANDS 50

e Notes

It is useful in development for by-passing commands (i.e. its function is equivalent
to the \iffalse....\fi commands in a TgX document).

4.2.29 Show...

This command makes mathsPIC return the value of a calculation or specified parameter.

e Syntax
ShowLength ((two-points))
ShowAngle ((three-points))
ShowArea ((three-points))
ShowPoints

ShowVariables

e Notes

The showarea() command is only for triangles. The results of the Show. . .
commands are shown in the output-file as a commented line.

e Example

showLength (AB)
showAngle (ABC)
showArea (ABC)
showPoints

showVariables

When the above examples are processed, the results appear as commented lines
in the output-file as follows.

%% Length (AB) 25.35746
%% Angle(ABC) = 39.35746 deg (0.68691 rad)

%% Area(ABC) = 54.54267
St

T LIST OF POINTS

I ===

%h q = (8.000, 9.000), LF-radius = 5.000, symbol = \bigodot
%% s = (6.000, 6.000), LF-radius = 0.000, symbol = \bullet
%% p = (5.000, 5.000), LF-radius = 3.000, symbol = \circle
%%h t = (56.000, 5.000), LF-radius = 7.000, symbol = \square
Toy= === —

s END OF LIST OF POINTS

Hofy=—————m

o= == —

He LIST OF VARIABLES
R

%h a =4

%% b = 12

=== ———m

%o END OF LIST OF VARIABLES
i

CHAPTER 4. MATHSPIC COMMANDS 51

4.2.30 System

This command allows the user to access the command line and execute system com-
mands. Allows programs to be run from within mathsPIC.
e Syntax

system (" (command)")

e Notes

The whole command must be delimited by inverted commas. For example,
the following command will temporarily stop mathsPIC processing, access the
command-line and run IATEX on the file myfile. tex, and then seamlessly return
and continue mathsPIC processing.

system("latex2e myfile.tex")

Alternatively, the system() command may be used to create a small batch file
on-the-fly in order to facilitate some procedure. In mathsPIC a common use is for
running a Perl program to write mathsPIC commands to a temporary file which
is then input by mathsPIC (see the examples at the end of the Examples chapter).

o Example

system("dir > mydir-listing.txt")
system("perl drawbox.pl 5 5 temp.txt")
inputFile(temp.txt)

4.2.31 Text

Places text at a given location.

e Syntax
Text ((string)) {LOCATION } [POSSN [, POSSN]]
LOCATION : := (point)
LOCATION : := (x-expr) , {y-expr)
LOCATION : := (point) , POINT-FUNCTION
POINT-FUNCTION : := shift ({(x-expr) , (y-expr))
POINT-FUNCTION : :=polar((r-expr) , (0-expr))
POSSN::= 1 | t | r | RI|D

o Notes

This command puts the given text-string either at the named point, or with
a displacement specified by the optional shift() or polar() or rotate()
functions. By default the text is centreed vertically and horizontally at the specified
location.

Optionally, text can be placed relative to the specified location using appro-
priate combinations of the PICTEX position options 1 t r B b to align the
left edge, right edge, top edge, Baseline, bottom edge respectively of the text
box with the point-location (see the PICIEX Manual, page 5; Wichura, 1992).

CHAPTER 4. MATHSPIC COMMANDS 52

For example, the text box ’ This is point P ‘ would be aligned such that the

right edge of the text box would be centreed vertically at the point P, using
text(This is point P){P}[r] (see figure 3.3).

Note that TgX and IATEX macros are very useful for defining blocks of text in
this setting, since the macro name can be used in the text () command for
convenience, as shown in the examples below.

e Example

text (A){5,6%}

text (A_1){A1, shift(2, 2)}

text (22) {22, shift(5, -5)}[tr]
text (23){Z2, polar(5, 20 deg)}[Br]
text (24){Z2, rotate(P, 45)}

text (\framebox{$z25%$}){Z3}
\newcommand{\mybox}{\framebox{$Z5$}}
text (\mybox){P421}

4.2.32 Var

The var command is used to define scalar variables. The variable name must begin with
a single letter (either upper or lower case), and may have up to a maximum of four®
following digits.

e Syntax

var (name) = {expr) [, (name) = (expr)] ...

e Notes

The variable name follows the same naming convention as points and variables
(see Section 4.2). The scalar argument can be any numeric expression.

New values can be re-allocated to existing variable-names; however, when this
occurs then mathsPIC does issue a warning message to hightlight this fact.
If it is important to be warned if a potential variable is accidentally reallocated
then one should consider using the const command instead (since mathsPIC
does generate an error message if a constant is reallocated).

Note that in addition to all the mathematical functions, the following functions
can also be used.

angle ({three-points))
angledeg ((three-points))
direction ({two-points))
directiondeg({two-points))
area((three-points))

xcoord ((point))

ycoord ((point))

e Example

SFrom mathsPIC version 1.11 onwards.

CHAPTER 4. MATHSPIC COMMANDS 53

var r = 20, r4 = r3*tan(0.3), j = (r*2e3)**2, r5 = AB

var e = _e_, pl = _Pi_

var t = _linethickness_

var L256 = AB %% gives length of line AB

var g137 = angle(ABC) %(default: returns in radians)

var g200 = angledeg(ABC) % returns in degrees

var d = direction(PQ) % angular direction of PQ in radians
var d = directiondeg(PQ) % angular direction of PQ in degrees
var h = area(ABC)

var r = incircleradius(ABC)

var x2000 = xcoord(A), y2000 = ycoord(A)

var mb = 12 rem 3 %} remainder after dividing by 3
var sl = sgn(h) % returns the sign (+1, -1, 0) of h
var i = int(k) % returns the integer value of k

4.3 Summary of mathsPIC commands

The following list shows the format and typical usage of all mathsPIC commands.
Although mathsPIC commands are not case sensitive, in this summary of commands
points are represented using upper case letters, and variables and constants are repre-
sented using lower case letters. Note that a leading \, is used for copying TgX or PICTEX
lines verbatim, for example with macros or coordinates of data points etc.

\ 4.5 6.3

%def loge(n)log(n)¥%

%def fancydashes() dasharray(lpt,2pt,3pt,4pt)%

%def plaindashes() dasharray(ipt,1ipt)%

%def d2r()_pi_/180%

%def r2d()180/_pi_%

ArrowShape (4mm, 30,50)

ArrowShape(default) %% generates arrowshape(2mm,30,40)
beginLoop ... endLoop 5

beginLoop ... endLoop n
beginNoOutput ... endNoOutput
beginSKIP ... endSKIP

const r40=40

drawAngleArc{angle(ABC), radius(3), internal, clockwise}
drawAngleArrow{angle (ABC), radius(3), internal, clockwisel}
drawArrow (AB) %from A to B

drawArrow(AB,CD)

drawCircle(J,12)

drawCircle(C,r2)

drawCircle(C,AB) %% the radius is length of line AB
drawCircumcircle (ABC)

drawCurve (ABC) %% three points only

drawExcircle (ABC)

drawIncircle (ABC)

drawLine (AB)

drawLine (ABCDE)

CHAPTER 4. MATHSPIC COMMANDS 54

drawPerpendicular (P,AB)

drawPoint (B)

drawPoint (ABP1P2)

drawRightAngle (ABC, 4)

drawSquare(P,2) %h side = 2

drawThickArrow (AB)

drawThickArrow(AB,CD)

drawThickLine (RS, TU)

inputFile(mathspic.dat)

inputFile(mathspic.dat) [4]

inputfilex*(fig2.dat) %% * disables mathsPIC processing of file
linethickness(2pt)
paper{units(lmm,3mm) ,xrange (-5,50) ,yrange(-5,50) ,axes(LR) }
paper{units(2cm) ,xrange(0,5) ,yrange(0,9) ,axes(X*Y) ,ticks(1,1)}
paper{units(k mm),xrange(0,5),yrange(0,9),axes(X*Y),ticks(1,1)}
point (D1){20,2}

point(D4){6.3,8.9}

point (P){x1,y1}

point (P){Q} %% make P have same coords as Q

point (P){xcoord(Q) ,ycoord(Q)} %% same as point(P){Q}
point (P) {AB,PQ}

point (P){3,4} [symbol=\odot,radius=2]

point (P){3,4} [radius=2]

point (D2){20,2} [symbol=square(2) ,radius=3]

point (D3){20,3} [symbol=circle(r) ,radius=5]

point (D4){20,4%} [symbol=\Box]

point (E1){D1, shift(5,6)}

point (E5){D1, shift(r2,6)}

point (E2){D2, polar(8, 1.34)} %% radians is the default
point (E2){D2, polar(8, 1.34 rad)}

point (E2){D2, polar(8,45 deg)}

point (E6){D2, polar(r4,45 deg)}

point (E2){D2, polar(8, direction(AB))} %% radians is the default
point (E2){D2, polar(8, directiondeg(AB) deg)}

point (E5){D2, polar(AB,45 deg)}

point (G2){Q, rotate(P, 23 deg)} % rotate Q about P by 23 deg
point(P){J, vector(AB)} %% from J with length and direction AB
point (D32){midpoint (AB)}

point (D2){intersection(AB,CD)}

point (F){PointOnLine (AB,5)}

point (F){Point0OnLine (AB,-d)}

point (G) {perpendicular(P,AB)}

point (H) {circumcirclecenter (ABC) }

point (J){incirclecenter (ABC)}

point (K) {excirclecenter (ABC,BC)}

point*(D1){20,3%}

point*(E1){D1, shift(3,0)}

point*(E1){E1}[radius=3] %/ change the line-free radius
PointSymbol (circle(r))

PointSymbol (square(1),2)

CHAPTER 4. MATHSPIC COMMANDS

PointSymbol (\odot,2)

PointSymbol (default)
PointSymbol(default,0.5)

showAngle ()

showArea()

showLength ()

showVariables

showPoints

system("dir > mydir-listing.txt")
system("perl myprogram.pl")

text (P){5,7}

text (A) {A}

text (K) {K} [r]

text (B){B, shift(5,5)}

text (23){Z2, polar(5, 20 deg)}[Br]
text (\framebox{$z25%}) {Z3}
\newcommand{\mybox}{\framebox{$Z25$}}
text (\mybox){P421}

text (\framebox{C}){C, polar(5,62 deg)}[Br]

var r3 = 20, r4 = r3 * tan(0.4), r5 = AB, e=_e_, pl = _Pi_

var g = angle(ABC)% (returns in radians)

var g = angledeg(ABC)Y, (returns in degrees)

var a = area(ABC)

var d = direction(PQ) % angular direction of PQ in radians
var d = directiondeg(PQ) % angular direction of PQ in degrees

var x2 = xcoord(A), y2 = ycoord(A)
var mb = 12 rem 3 %} remainder after dividing by 3
var t = _linethickness_

55

Chapter 5

P[CIEX commands

In this section we present a list of PICIEX commands for use with mathsPIC which
is adequate for most purposes. For a more extensive listing see the excellent 8-page
summary by by Duggan (1990). A 3-page German summary is available from Siart
(2008). Alternatively, there is a nice section on P[CIEX in Hoenig (1998), which includes
a brief list of commands.

The complete list of PICTEX commands is long and detailed, and is, unfortunately,
only available currently by purchasing the small The PJCTEX Manual by Wichura (1992)!.
See Chapter E for full details on PICIEX itself and Wichura’s manual (Section E.6).
Wichura’s manual is well worth obtaining if you intend to be adventurous with PICTEX.

PICTEX commands can only be used within the \beginpicture ... \endpicture
environment. Most PICTEX commands are short one-line commands starting with a
leading backslash. Such commands can be used in the normal way as mathsPIC will
automatically copy lines starting with a backslash command unchanged through into
the output-file (.mt file). For example, drawing with dashed lines is enabled using the
following PICTEX command

\setdashes

However, some PICIiEX commands are very long. It is therefore sometimes necessary to
have the initial part of a PICIIEX command on one line, with the rest of the command
continuing onto the next line, such that the second and subsequent lines may well not
have a leading backslash command. In order to protect such subsequent lines from
being processed as mathsPIC commands, they must be protected by a leading backslash
Sfollowed by one or more spaces (e.g. \Li...) as this instruction tells mathsPIC to copy
the rest of the line unchanged (without the leading backslash) through into the output-file.
For example, the PICTEX code for plotting data-points for a curve could be spread across
several lines in the mathsPIC file as follows (an important point to note is that the
PICTEX algorithm requires that the number of such points is odd—see Section 7.7).

\setquadratic

\plot 1.15 -0.67

\ 1.25 0.02

\ 1.35 1.24 /
\setlinear

! Available from Personal TgX Inc. (texsales@pctex.com, http: //www.pctex. com/books . html

56

CHAPTER 5. PICTEX COMMANDS 57

When these commands are processed by mathsPIC, they will appear in the output TgX
file (.mt file) as follows.

\setquadratic

\plot 1.15 -0.67
1.25 0.02
1.35 1.24 /

\setlinear

5.1 Useful P[CIEX commands

The following is a small list of PICTIEX commands which are particularly useful for
including in the mathsPIC file, mainly for controlling the thickness of lines and axes,
customising dash patterns and symbol spacing, and for plotting and rotation.

Some care needs to be taken with the syntax of PICIEX commands, which uses
spaces, angle brackets and commas. For example, where small angle brackets are
shown (e.g. ;<. ..>_,) then these must be used exactly as shown below, including spaces
(shown here as ;). Thus, if you wish to use a following comment (% ...) on the same
line as a PICTEX command, then you must ensure there is a trailing space (.,) after the
command. For example, you would implement a dash pattern of dash (4pt) alternating
with a gap of 2pt using the following command.

\setdashpattern <4pt, 2pt>_ % this command sets the pattern

The more extensive summary of PICITEX commands (pictexsum.pdf) by Duggan
(1990) mentioned above will certainly suffice for most people’s use.

\grid {cols} {rows} %% eg. \grid {5} {10}

\nogridlines

\plot

\setdashpattern <4pt, 2pt>

\setdashes <7pt> %% equivalent to \setdashpattern <7pt, 7pt>

\setdashes %/ default is \setdashes <5pt>
\setdots <4pt>
\setdots %% default is \setdots <5pt>
\setsolid %% sets solid-line mode (ie not dashes/dots)
\setlinear %% sets straight-line plotting mode
%% (ie not quadratic)
\setquadratic %% sets curved plotting for graphs etc

\setplotsymbol({\large .1})
\setplotsymbol({\tiny .}) %) default size for curves
%% (used by \plot)

\plotsymbolspacing=2pt %% sets spacing between plot symbols

%% (used by \plot)
\plotheading{. .} %% eg \plotheading{This is a quadratic}
\plot x1 yi1 x2 y2 ... / %k the <space>/ is the list terminator
\headingtoplotskip=1cm %} separation between plotheading & graph
\linethickness=2pt %% for horiz & vert lines: default 0.4pt
\frame <sep> {text} %% eg \frame <5pt> {Hello}
\rectangle <width> <height> %% eg \rectangle <2cm> <lcm>
\putrectangle corners at 5 10 and 30 5 %) corners at Top-left

CHAPTER 5. PICTEX COMMANDS 58

%% and Bottom-right

\inboundscheckon %% restricts plotting to plotting area
\inboundscheckoff hoto
\normalgraphs %% restores default values for
%% graph parameters (see Section 4.6.1)
\ticksin
\ticksout
\visibleaxes
\invisibleaxes

\circulararc 30 degrees from 3.5 4.5 center at 5 5
\ellipticalarc axes ratio 2:1 360 degrees from 3 3 center at 5 5
%%h(axes ratio is major-axis:minor-axis, i.e. a:b)

Note that PICTEX also has an excellent rotation facility (but only in conjunction
with PICIEX function commands, e.g., \ellipticalarc as shown below, and so will
not rotate points input by mathsPIC via a data-file). PICTEX will rotate about a given
point, by a given angle, all picture elements (but not text) which are detailed between
its \startrotation. .. and \stoprotation commands. However the decimal value
of the Sine and Cosine angle must be supplied (see below). If a rotation point is not
specified then rotation is performed about the origin. The format is as follows.

\startrotation by cos(t) sin(t) [about x y]
\stoprotation

This command is particularly useful for rotating curves. For example, to rotate an ellipse
by 30 degrees about the point (5,5) one would write

\startrotation by 0.86602 0.5 about 5 5
\ellipticalarc.....
\stoprotation

Note that the PICTEX \startrotation command would be easily amenable to being
rewritten as a mathsPIC macro (to avoid calculating the radian values etc).

A PICTEX error-bar facility is also available by loading the file errorbars.tex (see
Section E.4). Note that PICTEX does allow more sophisticated graph axes and tick-marks
to be setup, as well as shading of enclosed areas. However, these are complicated and
require access to the PICIEX Manual (see Section E.6), and are currently outside the
scope of mathsPIC.

5.2 Using the $ symbol with P[CTEX

Because PICIEX was originally written for Plain TgX there is a difficulty when using
the $ symbol in the labels for axes. The ‘work-around’ fix for this is to re-encode it
as, say, \dollar, and express $2 as {\dollar}2, as shown in the following example
which has dollars on the y-axis (note the % at the end of the first line to stop unwanted
horizontal space being grabbed by P[CIiEXand pushing the Y-axis slightly to the right).

\newcommand{\dollar}{\char’44}/,
\setcoordinatesystem units <imm, 1lmm>
\setplotarea x from O to 50, y from 0 to 50

CHAPTER 5. PICTEX COMMANDS 59

\axis bottom ticks numbered from O to 50 by 10 /
\axis left ticks withvalues {\dollar}1 {\dollar}2 / at 10 20 / /

\plotheading{A nice picture costing \$253}

Chapter 6

TEX and IATEX commands

A mathsPIC file (script) can contain any appropriate TgX and I4TgX commands, and
most of these commands are for use in the preamble (e.g., headers and footers).

6.1 Headers and footers

It is particularly useful to include in the mathsPIC file any TgX or I4TEX headers and
footers which would otherwise have to be added manually to the output file before
[ATiEXing the file. Note that the I4TgX command \thispagestyle{empty} is included
for convenience in mathspic.sty in order to stop a page number appearing in a figure
(see Section 2.7 for details).

For example, when using I4TEX a typical format for a mathsPIC file might be as
follows (for use with plain TeX see Section 3.2).

\documentclass [adpaper] {article}
\usepackage{mathspic, color}
\begin{document}

\beginpicture

\endpicture
\end{document}

Note that when using TeX or I4TEX commands within the PICIEX picture environ-
ment, it is very important to include the comment % symbol at the end of such lines,
to prevent PICTEX accumulating additional <space> characters from the ends of non-
PICTEX commands, since otherwise PICTEX incorporates such spaces into the horizontal
distance used for representing x-coordinates, with the effect that all subsequent picture
elements will be displaced slightly to the right.

If it is necessary (or simply convenient) to extent a TgX or IATEX command across
several lines, then each additional line must be protected by using a leading \, (a
backslash followed by one or more spaces) unless the line actually starts with a TEX
or IATEX command. A typical example is in the following macro (used in Figure 7.6)

60

CHAPTER 6. TgX AND I2ATgX COMMANDS 61

which defines a ‘display’ maths formula. The macro is split across several lines as
follows:

\newcommand{\formula}{%

\ $\displaystyle \sum_{p\geO} \Delta_{jp} z {(p+1)}$%
\ %
text (\formula){B}

6.2 The \thispagestyle{empty} command

This is an important command to include in the preamble, since this disables page
numbering on the same page as the diagram, and for this reason this command is
included in mathspic. sty (see Section 2.7).

If you intend to crop the image automatically using the -E option with DVIPS
command to make an EPS and PDF image, for example,

dvips -E myfigure.dvi -o myfigure.eps
epstopdf myfigure.eps

then if a page number has been typeset then the rest of the page including the pagenumber
will be included in the cropping.

Of course, if you intend to use mathsPIC commands in the main .tex document
(as opposed to simply using the EPS or PDF image) then this command can be edited
out of the file mathspic.sty as described in Section C.3.

6.3 The \typeout{} command

This is a very useful command which makes TgX print comments to the screen while the
output-file is being processed. For example, the following commands in the mathsPIC
file will print a message to the screen just before processing a data-file for a curve.

\typeout{processing the data-file nowl}/
inputfilex*(curve.dat)

This command is also useful when a file is input several times in a loop using the
mathsPIC inputFile{. .} [] command. In such cases it is quite useful to include the
line \typeout{. ..}/ at the beginning of the file being input, as this results in TgX
printing . . . to the screen each time the file is input.

Note the importance of including the comment 7% symbol at the end of the line
when the \typeout{}} command is used within the P[CTEX picture environment—this
applies mainly to lines ending with the right brace } of a TgX or I4TEX command (see
Section 3.2).

6.4 The Color package

The standard IATEX Color package can be used to draw parts of a diagram in colour, in
much the same way one would when dealing with text (note that the color package must
be installed after mathspic). One simply inserts the the usual IATEX ‘color’ commands
between mathsPIC commands (preferably on a separate line).

CHAPTER 6. TgX AND I2ATgX COMMANDS 62

Since the \color{} command is a [4TEX command, it is important to include the
comment % symbol at the end of the command when it is used within the PICTEX picture
environment. For example, the following code will draw the line PQ in blue.

\usepackage{mathspic, color}

\beginpicture

<é$ior{b1ue}%
\drawline (PQ)
\color{black}’

\endpicture
Note however, that while all PS and PDF viewers show colours, there are some DVI-
viewers which do not currently show colour.

Colour spilling (old TgX systems only): If you find that colour is spilling into
unexpected zones (say, into ordinary text following a figure), then this can be fixed
by using the IATEX command \normalcolory immediately before the \endpicture
command.

6.5 Other useful IATEX commands

For more details of these useful commands see Knuth (1990) p 272-279; Eijkhout
(1992); Salomon (1995). See also Chapter 8 for details of using IATEX commands for
accessing parameter values. Note, finally, that it is important to put a % on the end of
these IATEX commands in order to prevent PICIEX from adding spaces to the end.

\typeout{....}
\thispagestyle{empty}
\scrollmode % (forces TeX to display errors but not to stop)
\nonstopmode
\batchmode
\newlength{}
\newcommand{}
\color{..}
\normalcolor
\settowidth{}
\settolength{}
\settodepth{}

\write

\newwrite
\immediate\writel18{...}
\openout

\closeout

\the

\number

\showthe

\jobname

Chapter 7

Examples

This section describes some practical examples of figures drawn using mathsPIC,
together with the associated code.

When drawing a new figure or diagram, it seems best to start with a graduated coor-
dinate frame (see Figure 7.1) using the axes and ticks options of the paper command.
The next step is to define an anchor point from which other points can be derived—this
has the advantage that the whole figure can then be moved by simply changing the
coordinates of the anchor point. If necessary, different parts of a complicated figure can
be made having their own separate anchor points, allowing the various parts to be easily
adjusted relative to each other.

Remember that the command \thispagestyle{empty} is, for convenience, im-
plemented by mathspic.sty (see Section 2.7), in order to prevent page numbers
appearing in a figure.

As regards scales and units, it seems most convenient to use the 1mm units and to
keep the x and y scales the same whenever possible (i.e. use paper{units (imm)...}),
since this allows easy scaling up and down after the figure has been finished, as shown
in Section 7.9.

In practice, the whole process of editing and viewing can be conveniently automated
using a small script, to run mathsPIC, trim the image to the bounding box (BBox) and
generate the required file formats, as described in Section C.1.

7.1 Input- and output-files

The following example mathsPIC file (input-file) illustrates how some of these com-
mands are used to draw Figure 7.1. Note that the dashed line BD is drawn after the
PICTEX \setdashes command is invoked; following this \setsolid is used before
drawing the right-angle symbol. Also, the points A, B,C are defined using the TgX
\odot symbol ©®, in conjunction with a line-free zone of 1-2 mm in order to make the
lines go to the edge of the symbol—the value of the radius of such TgX symbols has to
be determined by trial and error—see Table 1.

% mpicpm07-1.m (Figure 7.1)
\documentclass [adpaper]{article}
\usepackage{mathspic}

63

CHAPTER 7. EXAMPLES 64

0 10 20 30 40 50 60 70

50+--l—-—-—-lo-JdJ__1__1__L__L5p
I I
I B I
40 3 - 40
| |
I I
30 ~ 30
| |
| |
I I
J D L
10 | A»O I 10
I I
0O+ ----=—=9--9--7--r--F 0
0 10 20 30 40 50 60 70
Figure 7.1:
\begin{document}
-
\beginpicture
\setdashes

paper{units(lmm) ,xrange(0,70) ,yrange(0,50) ,axes(LRTB) ,ticks(10,10)}
\setsolid

point (A){10,10} [symbol=\odot, radius=1.2] %% anchor point
point (B){A, polar (40, 50 deg)}[symbol=\odot, radius=1.2]
point (C){A, polar(50, 10 deg)}[symbol=\odot, radius=1.2]
point (D) {perpendicular(B,AC)}

drawPoint (ABCD)

drawLine (ABCA)

\setdashes

drawLine (BD)

\setsolid

drawRightangle(BDC,2.5)

text (B){B, shift(-1,4)}

text (A){A, shift(-4,-2)}

text (C){C, shift(4,-1)}

text (D){D, shift(1,-4)}

showLength (BD)

showLength (AC)

showArea (ABC)

showAngle (ABC)

\endpicture

\end{document}

When the above mathsPIC file is processed by mathsPIC the output-file (. mt file) is
as follows. Note how the PICTEX commands are preceded by their mathsPIC commands
(commented out), some of which have additional information (e.g. the coordinates of a
derived point—see the line %% point(D)...). Being able to compare the mathsPIC

CHAPTER 7. EXAMPLES 65

commands and the resulting PICTEX commands in the output-file is particularly useful
when debugging. Note also how the show. .. commands at the end of the file return
the lengths AD, BC, the area ABC, and the angle ABC.

ok
%* mathsPIC (Perl version 0.99.22 Dec 29, 2004)

%* A filter program for use with PiCTeX

%* Copyright (c) 2004 A Syropoulos & RWD Nickalls
%* Command line: mpic09922.pl -b mpicpm07-1.m

%* Input filename : mpicpm07-1.m

%* Output filename: mpicpm07-1.mt

%* Date & time: 2005/01/05 10:00:40

Yok mm
%% mpicpm07-1.m (figure 7.1)

%% mathsPIC Perl triangle

\documentclass [adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture
\setdashes
%% paper{units(lmm) ,xrange(0,70),yrange(0,50) ,axes(LRTB),ticks(10,10)}
\setcoordinatesystem units <imm,1mm>
\setplotarea x from 0.00000 to 70.00000, y from 0.00000 to 50.00000
\axis left ticks numbered from O to 50 by 10 /
\axis right ticks numbered from O to 50 by 10 /
\axis top ticks numbered from O to 70 by 10 /
\axis bottom ticks numbered from O to 70 by 10 /
\setsolid
%% point (A){10,10} [symbol=\odot, radius=1.2]
%% anchor point A = (10.00000, 10.00000)
%% point (B){A, polar(40, 50 deg)l}[symbol=\odot, radius=1.2]
B = (35.71150, 40.64178)
%% point (C){A, polar(50, 10 deg)}[symbol=\odot, radius=1.2]
C = (59.24039, 18.68241)
%% point (D){perpendicular(B,AC)} D = (40.17626, 15.32089)
%% drawPoint (ABCD)
\put {\odot} at 10.00000 10.00000 %% A
\put {\odot} at 35.71150 40.64178 %% B
\put {\odot} at 59.24039 18.68241 %% C
\put {\bullet} at 40.17626 15.32089 % D
%% drawLine (ABCA)

\plot 10.77135 10.91925 34.94015 39.72253 / %% AB
\plot 36.58878 39.82302 58.36311 19.50117 / %% BC
\plot 58.05862 18.47403 11.18177 10.20838 / %% CA
\setdashes

%% drawLine (BD)

\plot 35.91988 39.46001 40.17626 15.32089 / %% BD
\setsolid

%% drawRightangle(BDC,2.5)

CHAPTER 7. EXAMPLES 66

\plot 42.63828 15.75501 42.20416 18.21703 /
\plot 39.74214 17.78291 42.20416 18.21703 /
%% text(B){B, shift(-1,4)}

\put {B} at 34.711500 44.641780

%% text (A){A, shift(-4,-2)}

\put {A} at 6.000000 8.000000

%h text(C){C, shift(4,-1)}

\put {C} at 63.240390 17.682410

%% text(D){D, shift(1,-4)}

\put {D} at 41.176260 11.320890

%% length(bd) = 25.7115062228898

%% length(ac) = 50.0000025076019

%% area(abc) = 642.7877063896

%% angle(abc) = 86.97613 deg (1.51802 rad)
\endpicture

\end{document}

If the above output-file (.mt file) is to be included or \input into a document (say,
into a figure environment), it is sometimes useful to reduce the size of the file by
disabling the writing of %% comment lines (using the command-line -c switch), as well
as some of the header and footer lines which are not now required, as follows.

Yok
%* mathsPIC (Perl version 0.99.22 Dec 29, 2004)

%* A filter program for use with PiCTeX

%* Copyright (c) 2004 A Syropoulos & RWD Nickalls
%* Command line: mpic09922.pl -c mpicpm07-1.m

%* Input filename : mpicpm07-1.m

%* Output filename: mpicpm07-1.mt

%* Date & time: 2005/01/05 11:50:14

ik e
\documentclass[adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

\setdashes

\setcoordinatesystem units <imm,1mm>

\setplotarea x from 0.00000 to 70.00000, y from 0.00000 to 50.00000
\axis left ticks numbered from 0 to 50 by 10 /

\axis right ticks numbered from O to 50 by 10 /

\axis top ticks numbered from O to 70 by 10 /

\axis bottom ticks numbered from O to 70 by 10 /
\setsolid

\put {\odot} at 10.00000 10.00000 %% A

\put {\odot} at 35.71150 40.64178 %I B

\put {\odot} at 59.24039 18.68241 %% C

\put {\bullet} at 40.17626 15.32089 %% D

\plot 10.77135 10.91925 34.94015 39.72253 / %% AB
\plot 36.58878 39.82302 58.36311 19.50117 / %% BC

CHAPTER 7. EXAMPLES 67

\plot 58.05862 18.47403 11.18177 10.20838 / %% CA
\setdashes
\plot 35.91988 39.46001 40.17626 15.32089 / %% BD
\setsolid

\plot 42.63828 15.75501 42.20416 18.21703 /
\plot 39.74214 17.78291 42.20416 18.21703 /
\put {B} at 34.711500 44.641780

\put {A} at 6.000000 8.000000

\put {C} at 63.240390 17.682410

\put {D} at 41.176260 11.320890

%% length(bd) = 25.7115062228898

%% length(ac) = 50.0000025076019

%% area(abc) = 642.7877063896

%% angle(abc) = 86.97613 deg (1.51802 rad)
\endpicture

\end{document}

Note that the remaining comments at the end of the \plot and \put lines are generally
sufficient to understand what each line relates to. Note also that the —c switch only
removes comment lines having a leading %% pair of characters (but not the results of the
show () commands); comment lines prefixed with only a single % character remain.

7.2 Line modes

When drawing figures with both solid and dashed lines it is necessary to switch between
the PICTEX commands \setdashes and \setsolid, as in the following code for
drawing the rectangular box shown in Figure 7.2. The default \setdashes gives
alternating lines and spaces, each of width Spt.

More fancy dash-patterns (see Figure 7.2) can be easily generated using the math-
sPIC dasharray () command which defines the pattern cycle, and hence takes an even
number of parameters. For example the command

dasharray(6pt,2pt,1pt,2pt)

generates the dash pattern used for lines AH and DE in Figure 7.2.
If several different dash patterns are required then it maybe useful to define them as
separate mathsP1C macros, as follows for example.

%def fancydashes() dasharray(6pt,2pt, 1pt, 2pt)
%def simpledashes() dasharray(4pt,4pt)

The separate patterns can then be called as required as follows (see Figure 7.2).

fancydashes
drawline (AH, DE)
simpledashes
drawline (BG, CF)

The equivalent PICTEX command is the \setdashpattern command which also
takes an even number of parameters but has a slightly different syntax as follows.

CHAPTER 7. EXAMPLES 68

\setdashpattern <6pt,2pt,1ipt,2pt>
The equivalent IATEX macro would be as follows.

\def\fancydashes{\setdashpattern <6pt, 2pt, 1pt, 2pt>}%

\fancydashes

Note that in Figure 7.2 all the points are defined, directly or indirectly, relative to
point A, with the effect that the position of the whole figure can be adjusted simply by
altering the coordinates of point A. This can be useful when drawing diagrams having
several components since the relative position of each component can then be easily
adjusted.

/7 H
/ / ,/ / .
/ YA 7/
B ‘ C /
/ /
/ /
Vi /
l/ ¢/
/ /
A D
Figure 7.2:

%% mpicpm07-2.m (Figure 7.2)
\documentclass[ad4paper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture

paper{units(lmm), xrange(0,50), yrange(0,62)}
var s= 20 % Sides front & back

var L = 34 Y Length

var a2 = 56.6 Y angle degrees

%def fancydashes() dasharray(6pt,2pt, 1pt, 2pt)%
%def simpledashes() dasharray(4pt,4pt)%

point (A){5,7%}

point (B){A, polar(s,90 deg)}

point (C){B, polar(s,0 deg)}

point (D) {A, polar(s,0 deg)}

point (H) {A, polar(L,a2 deg)}

CHAPTER 7. EXAMPLES

point (G){B, polar(L,a2 deg)}
point (F){C, polar(L,a2 deg)}
point (E){D, polar(L,a2 deg)}
drawpoint (ABCDEFGH)
linethickness(2pt)

\setsolid
drawline (ABCDA)

\setdashes
drawline (HGFEH)
linethickness(default)
&fancydashes
drawline (AH, DE)
&simpledashes
drawline (BG, CF)
text (A){A, shift(-2,-4)}
text (B){B, shift(-4,1)}
text (C){C, shift(4,0)}
text (D){D, shift(1,-4)}
text (E){E, shift(4,0)}
text (F){F, shift(2,4)}
text (G){G, shift(-1,4)}
text (H){H, shift(-4,1)}
\endpicture
\end{document}

69

CHAPTER 7. EXAMPLES 70

7.3 Arrows

Arrows can be drawn in all possible orientations, will stretch between points, and
arrow-heads are readily customised using the mathsPIC Arrowshape command (see
also Salomon, 1992).

Although arrow shape can of course be controlled using the standard PICTEX \arrow
command, the mathsPIC Arrowshape command makes this easier by allowing you to
define (in degrees) the angle parameters (B and C) of the arrow-head directly (see box).
The default arrowshape is equivalent to the following command

Arrowshape (2mm, 30,40)

and can be invoked using the command

ArrowShape (default)

Arrowshape(L,B,C)
B = angle B; ABs degrees 1

— L —
C = angle C; AC5 degrees
By
D e A
By

% Arrowshape(6,30,60)

%— Arrowshape (4,30,60)

——> Arrowshape(2,30,60) C2
———> Arroushape(6,30,40)

—— = Arrowshape(4,30,40)

———> Arrowshape(2,30,40) default

Figure 7.3: The mathsPIC code for this figure is given in the appendix

If the arrowshape has been altered, it can be reset using the ArrowShape (default)
command. Curved arrows (circular arcs) are drawn using the drawAngleArrow com-
mand, which takes parameters for the angle, radius of arc, direction, and whether the
angle is internal or external (see Figures 7.4 and 7.5).

CHAPTER 7. EXAMPLES 71

%% mpicpm07-4.m (Figure 7-4)
\documentclass[adpaper]{article}

\usepackage{mathspic}

\begin{document} A

\beginpicture

paper{units(imm) ,xrange(5,45) ,yrange(5,45)}

point (A){30,30}

point (P){10,10}

point (B){30,10}

drawPoint (APB) P B
drawLine (APBA) Figure 7.4:

var d = 5

text (A){A,shift(1,d)}

text (B){B,shift(d,0)}

text (P) {P,shift(-d,0)%}
drawAngleArrow{angle (BPA) ,radius(11) ,internal, anticlockwise}
text (ψ){P,polar(7,22.5 deg)?}

drawRightangle (ABP,2.5)

\endpicture

\end{document}

Arrows can also be used to link elements in a diagram, as shown in Figure 7.5. The
right-hand diagram uses the drawArrow command; the small gap between the arrows
and the letters P, Q,R, T being due to the 5 unit line-free radius associated with these
points (see Figure 7.5b. The arrows are easily ‘stretched’ to accommodate their labels
simply by adjusting the separation of the nodes using the polar (r,0) commands (see
Feruglio, 1994).

g qxqrqxq
Q R

~+

p1 D3

P — T
D2

a. Circular arrows b. Straight arrows

Figure 7.5:

%% mpicpm07-5a.m (Figure 5a)
\documentclass[adpaper]{article}
\usepackage{mathspic}
\begin{document}

CHAPTER 7. EXAMPLES 72

\beginpicture

paper{units(1mm) ,xrange(10,40) ,yrange(0,45)}%, axes(LB), ticks(10,10)}
point (N){15,20}

point (8){N,shift(20,0)}

text (\framebox{N}){N,shift(0,-2.5)%}

text (\framebox{S}){S,shift(0,-2.5)}

point (Z){midpoint (NS)}
drawAngleArrow{angle (NZS) ,radius(NZ) ,internal,clockwise}
point (N1){N,shift(2,1)}

point (S1){S,shift(-2,1)}

point(Z1){Z,shift(0,-3)}
drawAngleArrow{angle (N1Z1S1) ,radius(N1Z1) ,internal,clockwise}
point (N2){N1,shift(2,-0.5)}

point (S2){S1,shift(-2,-0.5)}

point (Z2){Z,shift(0,-10)}
drawAngleArrow{angle (N2Z2S2) ,radius (N2Z2),internal,clockwise}
\endpicture

\end{document}

%% mpicpm07-5b.m (Figure 7.5b)
\documentclass[adpaper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture

paper{units(imm) ,xrange(0,45) ,yrange(0,45)}%, axes(LB), ticks(10,10)}
point (P) {5,103} [symbol=P,radius=5]

point (Q){P,polar(30,90 deg)}[symbol=Q,radius=5]
point (R){Q,polar(40,0 deg)}[symbol=R,radius=5]
point (T){P,polar(30,0 deg)}[symbol=T,radius=5]
drawPoint (PQRT)

drawArrow(PQ,QR,PT,TR,PR)

point (P1){midpoint (PQ)}
text(p_1){P1,shift(3,0)}

point (P2){midpoint (PT)}

text (p_2){P2,shift(0,-3)}

point (P3) {midpoint (PR)}

text (p_3){P3,shift(2,-2)}

point (T1){midpoint (TR)}

text (t){T1,shift(3,0)}

point (Q1){midpoint (QR)}

%% use a LaTeX macro for the label
\newcommand{\g}{$q \star q \star q \star q \star q$}
text (\q){Q1,shift(-1,3)}

\endpicture

\end{document}

CHAPTER 7. EXAMPLES 73

7.4 Circles & colour

MathsPIC allows the point-symbol to be designated as a circle using the option
[symbol=circle(r) ,radius=z] to the point() command, which not only gives
the circles an internal line-free zone, but also arranges that they are drawn by the
drawPoint command, as shown in Figure 7.6. This construction greatly simplifies the
drawing of directed graphs, trees and equivalent structures. In Figure 7.6 we have also
made use of the I4TEX Color package to make the circles red, the lines blue, and the text
and labels black, as can be seen from the code in the mathsPIC file. Some DVI-viewers
may not show colours.

%% mpicpm07-6.m (figure 7.6)

%% 4 circles figure
\documentclass[adpaper]{article}
\usepackage{mathspic,color}
\begin{document}

\beginpicture

paper{units(imm) ,xrange(0,70),yrange(0,60)}%

point (A){30,11} [symbol=circle(8) ,radius=8]

point (B){A,shift(-10,30)} [symbol=circle(15) ,radius=15]
point (C){A,polar(30,20 deg)l}[symbol=circle(5),radius=5]
point (D) {A,polar(45,50 deg)}[symbol=circle(7) ,radius=7]
\color{red}%

drawPoint (ABCD)

\color{bluel}},

drawLine (AB,AC,BC,BD,CD)

\setdashes

drawLine (AD)

\color{black}%

text (A){A}

%% use a macro for the formula

\newcommand{\formula}{/

\ $\displaystyle \sum_{p\ge0} \Delta_{jp} z {(p+1)}$%
\ o

text (\formula){B}

text (C) {C}

text (D) {D}

\endpicture

\end{document}

Note that in this particular case it is necessary to define the maths formula using
the IATEX \displaystyle, in order to avoid the embedded \textwidth white space
associated with using \vbox{\formula} in the \text () command, and hence allow
centering of the figure. Note also how the mathsPIC \,. . . commands make it easy to
include multi-line macros in the mathsPIC file.

Points on circles (and their labels) are most easily defined and positioned using the
polar (r,0) option, as shown in the mathsPIC file for Figure 7.7. Notice the use of
the variable r for the radius of the circle (allocated using the command var r = 20),

CHAPTER 7. EXAMPLES 74

Figure 7.6:

which then allows the use of r to define the radius in the polar commands for the

points P, Q, S.
D .

S

Q

P

Figure 7.7:

%% mpicpm07-7.m (Figure 7.7)
\documentclass[ad4paper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture

paper{units(lmm), xrange(5,55), yrange(5,55)}

point (C){30,30} [symbol=\odot,radius=1.2] %% center
var r = 20 %% radius
drawcircle(C,r)

point (P){C, polar(r,250 deg)}

point (Q){C, polar(r,120 deg)}

CHAPTER 7. EXAMPLES 75

point (S){C, polar(r,-30 deg)}

drawpoint (CPQS)

drawline (PCSQP)

text (P){P, polar(5,250 deg)}

text (Q){Q, polar(5,120 deg)}

text (3){S, polar(5,-30 deg)}

drawAngleArrow{angle(PCS), radius(8) internal anticlockwise}
text (β){C, polar(5,285 deg)}

drawAngleArrow{angle(PQS), radius(12) internal anticlockwise}
text (α){Q, polar(8,-65 deg)?

showangle (PQS) % alpha
showangle (PCS) % beta
\endpicture

\end{document}

Note that the returned values in the output-file from the showAngle commands (see
below) for Figure 7.7 indicate that 3 is twice o, as one would expect.

40.00000 deg (0.69813 rad) ‘%alpha
80.00000 deg (1.39626 rad) Ybeta

%% angle(pgs)
%% angle(pcs)

MathsPIC offers a range of other circle commands (drawIncircle,
drawExcircle, drawCircumcircle) specifically for geometry diagrams, as shown in
Figure 7.8.

60 —l— ——————————————————— |
| | Triangle, pentagon B [

50 4 | and three circles |
[[

[[

40 4 |
| |

[[

30 4 |
[[

| |

20 |
[[

B [
10 | |
| |
oO+---~——9-~7-"~7-~1 |
0 10 20 30 40 50 60 70

Figure 7.8:

%% mpicpm07-8.m (Figure 7.8)
\documentclass [adpaper] {article}
\usepackage{mathspic}
\begin{document}

CHAPTER 7. EXAMPLES 76

\beginpicture
\setdashes
paper{units(1mm) ,xrange(0,70) ,yrange(0,60) ,axes (LBT*R*) ,ticks(10,10)}
\setsolid
point (A){10,10} %% anchor point
point (B){A, polar (50,50 deg)}
point (C){A,polar(50,0 deg)}
point (J){pointonline(AB,30)}
point (K) {perpendicular(J,AC)}
drawRightangle (JKC,3)
drawLine (AB, AC, JK)
drawIncircle (AJK)
drawExcircle (AJK, JK)
\setplotsymbol({\large .}) \setdots
drawCircumcircle (AJK)
\setplotsymbol ({\tiny .3})
point (I){IncircleCenter (AJK)} [symbol=\odot, radius=1.2]
point (E) {ExcircleCenter (AJK, JK)} [symbol=\odot, radius=1.2]
point (P1){perpendicular(E,AC)}
var r = EP1 Y% radius of excircle
var d = 72 %% angle of pentagon (deg)
var al = -90, a2=al+d, a3=a2+d, ad4=a3+d, ab=ad+d
point (P2){E, polar(r,a2 deg)}
point (P3){E, polar(r,a3 deg)}
point (P4){E, polar(r,ad deg)}
point (P5){E, polar(r,ab deg)}
drawPoint (ABCJKIEP1P2P3P4P5)
\setdashes
drawLine (P1P2P3P4P5P1,EP1,EP2)
\setsolid
drawAngleArc{angle (P2EP1) ,radius(9),internal,clockwise}
\newcommand{\figtitle}{%
\fbox{%
\begin{minipage}{30mm}%
\ Triangle, pentagon and three circles},
\end{minipagel/,
\ 3%
text (\figtitle){20,52%}
var s = 5
text (A){A,polar(s,230 deg)}
text (B) {B,polar(s,50 deg)}
text (C){C,polar(s,0 deg)}
text(J){J,polar(s,90 deg)}
text (K) {K,polar(s,270 deg)}
text (E){E,polar(s,a3 deg)}
text (72){E,polar(5.5,-54 deg)}
text (I){I,shift(3, 0)}
text (P_1){P1,polar(s, al deg)}
text ($P_28) {P2,polar(s, a2 deg)}
text (P_3) {P3,polar(s, a3 deg)}

CHAPTER 7. EXAMPLES 71

\endpicture
\end{document}

7.5 Functionally connected diagrams

When constructing diagrams it is often useful to write the mathsPIC file in such a
way that the position of each new point is related to that of earlier points, since then
the structure of the diagram is maintained even when points are moved as shown in
Figure 7.9. Although the two diagrams appear to be quite different the mathsPIC code
for the two diagrams differs only in the angle of the line AB (left diagram, 60 degrees;
right diagram, 5 degrees) as defined in the point (B) {. ..} command as follows.

e Left-hand diagram: point (B){A,polar (45,60 deg)}

e Right-hand diagram: point (B) {A,polar (45,5 deg)}

A A
Q

Figure 7.9: The mathsPIC code for the two diagrams differs only in the angle of the
line AB as defined in the point (B) {. ..} command (see mpicpm07-9.m).

%% mpicpm07-9.m (Figure 7.9)
\documentclass [adpaper] {article}
\usepackage{mathspic}
\begin{document}

\beginpicture

paper{units(imm), xrange(5,110), yrange(0,45)}
point (A){15,5} [symbol=\odot, radius=1.2]
point (P){A, shift(10,30)}[symbol=\odot, radius=1.2]
point (B){A, polar (45,60 deg)}

point (Q) {perpendicular(P,AB)}

drawRightangle (PQA,2)

drawPoint (ABPQ)

drawLine (ABPQ)

drawIncircle (PQB)

var d = 5

CHAPTER 7. EXAMPLES 78

text (A){A,shift(-d, 0)}

text (B) {B,shift(d, 0)}

text (P){P,shift(-d, 0)}

point (S){pointOnLine(QP,-5)3}

text (Q) {S}

point (N){A,shift(0,10)}

\setdashes

drawline (AN)

\setsolid

drawAngleArrow{angle(NAB), radius(5.7), internal, clockwise}
Yofh==——————= second figure —--——--——--———————————-
point*(A){60,5} [symbol=\odot, radius=1.2]
pointx(P){A, shift(10,30)}[symbol=\odot, radius=1.2]
point*(B){A, polar(45,5 deg)} %%5 60 deg
point*(Q){perpendicular(P,AB)}

drawRightangle (PQA,2)

drawPoint (ABPQ)

drawLine (ABPQ)

drawIncircle (PQB)

text (A) {A,shift (-5, 0)}

text (B){B,shift(5, 0)}

text (P){P,shift (-5, 0)}
point*(S){pointOnLine(QP,-5)}

text (3Q$){S}

point*(N){A,shift(0,10)}

\setdashes

drawline (AN)

\setsolid

drawAngleArrow{angle (NAB), radius(5.7), internal, clockwise}
\endpicture

\end{document}

Note that in Figure 7.9 the location of the label ‘Q’ is made to lie outside the figure
by placing the label at point S, which is defined as being 5 mm to the right of the line
AB and in-line with the points PQ, using the command
point (S){pointOnLine(QP,-5)}

7.6 Inputting the same data-file repeatedly

There are two methods:
e use the beginloop [n] ... endloop environment

The file myfile.dat is input six times sequentially using the commands

beginL00OP 6
inputfile(myfile.dat)
endLOOP

e use the inputfile [n] command

CHAPTER 7. EXAMPLES 79

The file myfile.dat is input six times sequentially using the single command
inputfile(myfile.dat) [6].

Figure 7.10:

Figure 7.10 was produced by the following code which inputs a small file of math-
sPIC code (mpicpm07-10.dat) repeatedly 35 times using the command
inputfile (mpicpm07-10.dat) [35]. Note the use of the point* commands in the
data-file to re-allocate points.

%% mpicpm07-10.m (figure 7-10)

%% mathsPIC small spiral by recursion
%% (requires datafile mpicpm07-10.dat)
\documentclass[adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

paper{units(imm), xrange(0,60), yrange(0,60)}), axes(LB), ticks(10,10)}
point (C){30,30} % circle center
drawcircle(C,25)

%% initialise the reusable points and variables
var a=315 Y angle degrees

var r=20 7 start radius

var s=b5 % square semi-diagonal (see datafile)
point (T){C,polar(r,330 deg)}

%% cycle datafile 35 times

inputfile (mpicpm07-10.dat) [35]

\endpicture

\end{document}

%% mpicpm07-10.dat -------- first line---—--------———-
%% mathsPIC (spiral data) input by file mpicpm07-10.m
var a = a+15, r = r-0.5 %% increment angle and radius
point*(P){C,polar(r,a deg)} ' increment point P
drawpoint (P)

CHAPTER 7. EXAMPLES 80

drawline (TP) %% draw line from OLD T to NEW P
point*(T){P} %% reallocate T <-- P

%% make a rotated square centered on P with side/2=s
point*(Q1){P,polar(s,0 deg)}

point*(Q2){P,polar(s,90 deg)}
point*(Q3){P,polar(s,180 deg)}
point*(Q4){P,polar(s,270 deg)}

drawline (Q1Q2Q3Q4Q1)

% eof

When the inputfile command is used mathsPIC writes the iteration number to the
output file, prefixed using three % symbols (to make sure they are not deleted when using
the —c switch, as follows.

%%%h Iteration number: 26

For example, the following extract shows the resulting output .mt file showing
how mathsPIC writes the iteration number of each data-file input to the output file just
before it inputs the data-file. This example includes the whole of the 26th cycle of
data-file input. It also demonstrates the value of labelling the beginning and the end of
the data-file differently in order to make it easy to see the cycling of the input file. This
is very helpful as it allows you to check whether the data-file is working correctly.

\plot 31.49519 26.25000 36.49519 21.25000 / %% Q3Q4

\plot 36.49519 21.25000 41.49519 26.25000 / %% Q4Q1
%% eof

%%% Iteration number: 26

%% mpicpm07-10.dat -------- first line——-—————————————m

%% mathsPIC (spiral data) input by file mpicpm07-10.m

%h var a = a+15, r = r-0.5 % increment angle and radius

%%h a = 705

%hr =17

%% point*(P){C,polar(r,a deg)} Jincrement P, P=(36.76148, 28.18827)
%% drawpoint (P)

\put {\bullet} at 36.76148 28.18827 %% P

%% drawline (TP) %% draw line from OLD T to NEW P

\plot 36.49519 26.25000 36.76148 28.18827 / Y% TP

%% point*(T){P} %) reallocate T <-- P T = (36.76148, 28.18827)
%% make a square on P with side/2=s (s is defined in mpicpm07-10.m)
%% point*(Q1){P,polar(s,0 deg)} Q1 = (41.76148, 28.18827)

%% pointx*(Q2){P,polar(s,90 deg)} Q2 = (36.76148, 33.18827)
%% point*(Q3){P,polar(s,180 deg)} Q3 = (31.76148, 28.18827)
%% point*(Q4){P,polar(s,270 deg)} Q4 = (36.76148, 23.18827)
%% drawline (Q1Q2Q3Q4Q1)

\plot 41.76148 28.18827 36.76148 33.18827 / %% Q1Q2

\plot 36.76148 33.18827 31.76148 28.18827 / %% Q2Q3

\plot 31.76148 28.18827 36.76148 23.18827 / %% Q3Q4

\plot 36.76148 23.18827 41.76148 28.18827 / %% Q4Q1

%% eof

CHAPTER 7. EXAMPLES 81

%%% Iteration number: 27
%% mpicpm07-10.dat -------- first line——-——————————————

Because mathsPIC prefixes the iteration number comment with %%7 these comments
remain even when the —c switch is used, as the following extract of the same data shows.

\plot 31.49519 26.25000 36.49519 21.25000 / %% Q3Q4
\plot 36.49519 21.25000 41.49519 26.25000 / %% Q4Q1
%%% Iteration number: 26

\put {\bullet} at 36.76148 28.18827 % P

\plot 36.49519 26.25000 36.76148 28.18827 / %% TP

\plot 41.76148 28.18827 36.76148 33.18827 / %% Q1Q2
\plot 36.76148 33.18827 31.76148 28.18827 / %% Q2Q3
\plot 31.76148 28.18827 36.76148 23.18827 / %)% Q3Q4
\plot 36.76148 23.18827 41.76148 28.18827 / %% Q4Q1

%%%h Iteration number: 27
\put {\bullet} at 36.50000 30.00000 %% P

7.6.1 Using the beginloop. . .endloop environment

The script for the previous spiral figure of squares can be written more simply (i.e. with-
out repeatedly inputting a separate file) using the beginloop. . .endloop environment
as shown in the following example. Some care needs to be taken in initialising (before
the loop) all those quantities which get changed or incremented with each cycle of the
loop. Note also that (a) since we are not using the inputfile command it is useful to
create a loop counter (n) so we can see which loop is which when we read the output
.mt file, (b) the squares will not be rotated in this particular example as we are using the
[symbol=square(s)] option with the point command in order to generate the square,
and (c) since all mathsPIC commands are case-insensitive we have chosen to capitalise
the ‘loop’ of the commands for clarity.

\beginpicture
paper{units(lmm), xrange(0,60), yrange(0,60) axes(LB), ticks(10,10)}
point (C){30,30} % circle center
drawcircle(C,25)
%% initialise loop counter (n), angle (a), radius (r), side (s)
var n=0, a=315, r=20, s=7
point (T){C,polar(r,330 deg)}
beginLO0OP 35 % loop 35 times
%% increment loop counter (n), angle (a) and radius (r)
var n=n+l1, a = a+15, r = r-0.5
%% increment position of new square with side s
point*(P){C,polar(r,a deg)}[symbol=square(s)]
drawpoint (P) % draw new square
text (\bullet){P} J, draw bullet in center of new square

CHAPTER 7. EXAMPLES 82

drawline (TP) % draw line from OLD T to NEW P
point*(T){P} % reallocate T <-- P

endLOOP

\endpicture

7.6.2 Using IATEX to cycle a loopcounter

A slightly irritating problem associated with processing diagrams which involve repeated
loops is that while the .mt file is being processed by IATEX there is no screen activity to
show how things are proceeding.

In this example program we therefore illustrate a simple way of using some IATEX
register commands (Knuth (1990) p 118-121; 272-273; Eijkhout (1992) p 242-244) in
order to make I4TEX indicate the loop status on the screen while it is processing the .mt
file. This can be useful for debugging especially if the loop is cycled many times.

We first allocate a suitable name to an unused TEX integer register (a so-called
count register) using the TgX \newcount command (here we have used the name
\loopcounter), and then we initialise it to zero, as follows (all in the main calling
program).

\newcount\loopcounter
\loopcounter=0

Then in the loop (or in the data file itself) we increment the counter and also print the
result to the screen using the \typeout{. ..}/, command, remembering to include a %,
symbol at the end.

\advance\loopcounter by 1
\typeout{loop = \the\loopcounter}’,

A typical use might therefore be as follows:-

\beginpicture

\newcount\loopcounter %% allocate a TeX rigester
oopcounter= (% initialise the register

\loop ter=0 %% initialise th gist

%% create a convenient macro

\newcommand{\showloopnumber}{%
\advance\loopcounter by 1 %increment TeX loop counter
\typeout{loop = \the\loopcounter}), %print loop no to screen
\ %

beginLO0OP 26
\showloopnumber,

endLOOP
\endpicture

The screen output during the IATEX processing (with respect to the command
latex mpicpm07-10.mt) then appears as the following (see Figure 7.10).

This is TeX, Version 3.14159 (Web2C 7.4.5)

(./mpicpm07-10.mt

LaTeX2e <2001/06/01>

Babel <v3.7h> and hyphenation patterns for american, french, german,

CHAPTER 7. EXAMPLES 83

basque, italian, portuges, russian, spanish, nohyphenation, loaded.
(/usr/share/texmf/tex/latex/base/article.cls

Document Class: article 2001/04/21 vl1.4e Standard LaTeX document class
(/usr/share/texmf/tex/latex/base/sizel0.clo))
(/usr/share/texmf/tex/latex/base/mathspic.sty

Loading mathsPIC package (c) RWD Nickalls & A Syropoulos 08/08/2004
(/usr/share/texmf/tex/generic/pictex/prepictex.tex)
(/usr/share/texmf/tex/generic/pictex/pictexwd.tex)
(/usr/share/texmf/tex/generic/pictex/postpictex.tex)) (./mpicpm07-10.aux)
loop =1

loop = 2
loop = 3
loop = 4
loop = 33
loop = 34
loop = 35

[1] (./mpicpm07-10.aux))
Output written on mpicpm07-10.dvi (1 page, 106560 bytes) .
Transcript written on mpicpm07-10.log.

7.7 Plotting graphs

Data-files which do not contain mathsPIC commands can be input using the inputfilex* ()
command. This command inputs files verbatim, and so can be used for inputting files
containing, for example, only PICTEX commands and/or points for plotting curves. For
example, the following mathsPIC code (mpicpm07-11.m) draws the quartic curve
shown in Figure 7.11, by inputting in verbatim a datafile containing some PCTEX
commands and a set of data points for plotting. Note that in this example the x-axis is
stretched by using units(3cm, cm) in the paper{} command.

%% mpicpm07-11.m (Figure 7-11)
\documentclass [adpaper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture

\linethickness=1pt %% make a thick line for the axes
paper{units(3cm,1icm) ,xrange(-1,2) ,yrange(-2,4) ,axes(XY),ticks(1,1)}
\linethickness=0.4pt %% reset to default value
\headingtoplotskip=8mm

\plotheading{\fbox{\Large A quartic equation}}

%% now load file containing data points for curve

inputfile* (mpicpm07-11.dat)

pointsymbol(default,0.3) % define line-free-radius
point(E1){1,3.5}

text ($£(x)=6x"4 - 8x"3 + 1$){E1} I center the equation at El1

CHAPTER 7. EXAMPLES

A quartic equation

f(z) =6zt — 823 +1

\

inflection points

point(E2){1.4,2}

drawarrow (E1E2)

point (J1){0.55,2}
text(inflection points){J1}
point (J2){0,1}

point (J3){0.6,0}
drawarrow(J1J2,J1J3)
\endpicture

\end{document}

Figure 7.11:

% center inflection text at J1

84

CHAPTER 7. EXAMPLES 85

The datafile for the curve is as follows—note the leading \ , on the data-point lines to
force mathsPIC to read these lines as data (i.e., to copy the lines unchanged into the .mt
file) and not to process them as mathsPIC commands. Remember that PICTEX requires
an odd number of pairs of data points to satisfy its curve-drawing algorithm.! Note also
that the final data-point in the sequence must be ‘terminated” using a .,/ pair, as shown
below.

%% mpicm07-11.dat (Figure 7.11)
%% quartic curve data (use an odd number of data points)

\setquadratic
\plot

\ -0.6 3.50
\ -0.5 2.37
\ -0.4 1.66
\ -0.35 1.43
\

AN

\ 1.15 -0.67
\ 1.25 0.02
\ 1.35 1.24
\ 1.45 3.13 /
\setlinear

WHEQF

However, when there are only a few data points, it is sometimes more convenient just to
plot the points separately and then draw connecting lines, as shown in Figure 7.12.

Weight change with diet

77
76 - ©— Q\
Weight .0 o—
(kg) 75 = ‘\B

®

74 Jasn

73 | | I | |

0 1 2 3 4) 6
Weeks
Figure 7.12:

%% mpicpm07-12.m (Figure 7.12)
\documentclass [adpaper] {article}

I'See the PICTEX manual (Wichura, 1992).

CHAPTER 7. EXAMPLES 86

\usepackage{mathspic}
\usepackage{amssymb}
\begin{document}

\beginpicture

paper{units(lcm) ,xrange(0,6) ,yrange(73,77) ,axes (LBT*Rx) ,ticks(1,1)}
pointsymbol (\odot,0.2)

point(d1){1, 76.2}

point(d2){2, 76.2}

point(d3){3, 75.5}

point(d4){4, 75.7}

point(d5){5, 74.6}

drawpoint(d1d2d3d4d5)

drawline(d1d2d3d4d5)

A

pointsymbol (\boxdot, 0.2)

point (k1){1, 75.2}

point (k2){2, 75.4}

point (k3){3, 74.8}

point(k4){4, 74.1}

point (k5){5, 74.0}

drawpoint (k1k2k3k4k5)

\setdashpattern <2pt, 2pt>

drawline (k1k2k3k4k5)

A

\plotheading{\textsf{\Large Weight change with diet}}
text (\shortstack{\textsf{\large Weight}\\(kg)}){-1.5,75.3}
text (\textsf{\large Weeks}){3,72}

\endpicture

\end{document}

7.8 Drawing other curves

The drawcurve command can also be used for drawing smooth curves linking a
number of points or touching lines. For example, Figure 7.13 shows a smooth curve
touching a piecewise linear closed line?, some of the points being constructed using a
Bézier technique®. The smooth curve is drawn using the drawcurve () command for
successive three-point sequences.

%% mpicpm07-13.m (Figure 7.13)
\documentclass[adpaper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture
var u = 12 %% units = 12 mm
paper{units (Umm) ,xRange(0.5,8.5) ,yRange(-0.5,5.5)}

2Figure 7.13 was constructed and drawn by Frantisek Chvila.
3see The Metafont book by DE Knuth, chapter 3 for details regarding Bézier curves.

CHAPTER 7. EXAMPLES 87

Figure 7.13: A smooth curve inscribed in the intersecting closed line ABCDEF GA

var r = 0.7 %) line-free radius of \circ (0.7mm)
var r = r/u %% line free radius scaled for U mm
pointsymbol (\circ,r)

Point (A){1,1}

Point (B){2,4}

Point (C){5,3}

Point (D){6,0%}

Point (E){8,2}

Point (F){8,5%}

Point(G){3,0}

pointsymbol (default) %% restore \bullet
A

Point (A1) {midpoint (AB)}

Point (B1){midpoint (BC)}

Point (C1){midpoint (CD)}

Point (D1) {midpoint (DE)}

Point (E1){midpoint (EF)}

Point (F1){midpoint (FG)}

Point (G1){midpoint (GA)}

A

Point (A2){midpoint (G1A1)}

Point*(A2) {midpoint (AA2)}

Point (B2){midpoint (A1B1)}
Point*(B2){midpoint (BB2) }

Point (C2){midpoint (B1C1)}

Point*(C2) {midpoint (CC2)}

Point (D2){midpoint (C1D1)}
Point*(D2){midpoint (DD2)}

CHAPTER 7. EXAMPLES

Point (E2){midpoint (D1E1)}
Point*(E2) {midpoint (EE2)}

Point (F2){midpoint (E1F1)}
Point*(F2){midpoint (FF2)}

Point (G2){midpoint (F1G1)}
Point*(G2) {midpoint (GG2)}

%

DrawPoint (ABCDEFG)

DrawPoint (A1B1C1D1E1F1G1)
DrawPoint (A2B2C2D2E2F2G2)

%

DrawLine (ABCDEFGA)

\setplotsymbol ({\Large.})
DrawCurve (A1B2B1)

DrawCurve (B1C2C1)

DrawCurve (C1D2D1)

DrawCurve (D1E2E1)

DrawCurve (E1F2F1)

DrawCurve (F1G2G1)

DrawCurve (G1A2A1)

%

Text (A){A,shift(-0.2,0)}

Text (B){B,shift(-0.2,0.1)}

Text (C){C,shift(0,0.25)}

Text (D){D,shift(0,-0.25)2}

Text (E){E,shift(0.2,0)}

Text (F){F,shift(0,0.25)}

Text (G){G,shift(0,-0.25)}
\scriptsize

Text (A_1){A1,shift(0.25,0)}
Text (B_1){B1,shift(0,-0.2)}
Text (C_1){C1,shift(0.25,0)}
Text (D_1){D1,shift(-0.2,0.15)} %
Text (E_1){E1,shift(-0.2,0)}
Text (F_1){F1,shift(0.15,-0.15)}
Text (G_1){G1,shift(0.1,0.2)}
Text (A_2) {A2,shift(0.25,0)}
Text (B_2){B2,shift(0.1,-0.2)}
Text (C_2){C2,shift(-0.1,-0.15)}
Text (D_2){D2,shift(0.1,0.2)}
Text (E_2) {E2,shift(-0.25,0.05)} ¥
Text (F_2) {F2,shift(0.05,-0.2)} %
Text (G_2){G2,shift(0,0.25)} yA
\endpicture

\end{document}

88

CHAPTER 7. EXAMPLES 89

7.9 Scaling

Note the technique used in the code for Figure 7.13 above, for making the physical
line-free radius (r) invariant with respect to the scaling value (u) (i.e. does not change
when the figure is enlarged or reduced by varying the value of the variable u), as follows.

var u = 12 %% units = 12 mm

paper{units(u mm),xRange(0,9),yRange(-1,6)}

var r = 0.7 %% line-free radius of \circ = 0.7mm
var r = r/u %% scaled linefree radius for u mm
pointsymbol (\circ, r)

point (A){1,1}

This technique can be very useful when it is necessary to scale the figure after having
designed the figure in order, say, to make it fit into a particular space in a document.

7.10 Using Perl programs

Since mathsPIC allows access to the command-line via the system () command, users
can write Perl programs which can then be used as a powerful aid for drawing compli-
cated mathsPIC diagrams. In other words, components of a diagram (particularly those
components which are frequently used) can be encoded as a small Perl program which
can then be invoked via the mathsPIC system() command. Particularly useful is the
fact that Perl programs can have parameters passed to them, which greatly increases
their value and utility with regard to mathsPIC. Indeed, a mathsPIC file for drawing
a particularly complicated diagram could usefully input several Perl programs, each
drawing separate elements of the diagram.

In view of the interplay between the mathsPIC file and the Perl program it calls, we
now describe two typical examples in some detail. In the following some familiarity
with the Perl programming language is assumed.

7.10.1 Example-1

This example (see Figure 7.14) uses the small Perl program drawcurvedarrow.pl
(see below) to generate the mathsPIC commands for drawing a curved arrow (note that
there is no mathsPIC command for doing this at the moment), and place them in a
temporary file which can then be accessed by the mathsPIC file.

Perl program (drawcurvedarrow.pl)

#!/usr/bin/perl

drawcurvedarrow.pl

5 command-line parameters A B C h filename

my ($A, $B, $C, $h, $filename)=0ARGV;

open (outfile, ">$filename")|| die "ERROR can’t create file $filename\n";
print (outfile "Point*(P999){pointonline(BA, -(AB)/3)F\n");

print (outfile "Point*(H999){pointonline($C P999,$h) \n");

print (outfile "Drawcurve(AB H999)\n");

CHAPTER 7. EXAMPLES 90

4 |] | | 4
3 < -3
2 2
14 END L
0 T | | | 0

0 1 2 3 4)

Figure 7.14: A curved arrow drawn using the Perl
program drawcurvedarrow.pl

print (outfile "drawArrow(H999 $C)\n");
close (outfile);

The above Perl program accepts five parameters and writes the mathsPIC commands
required for drawing a curved arrow through the three points A, B,C (from A to C). The
program places an arrowhead (length £) at the end pointing at point C, and places all the
necessary mathsPIC commands into the temporary file filename.

Note that in this example all new points defined in the Perl program are defined using
the point* () command, since this allows the program to be reused without needing
to know which points have been defined before. The point names P999 and H999 have
been chosen in order to try and avoid clashing with any point names likely to be used in
the mathsPIC file. Indeed, the authors suggest that point numbers > 900 be reserved for
use in Perl programs in this way. Note also that these particular point names (e.g. H999)
need to be separated by a space from a previous string name (e.g. AB H999) since
they are not Perl variable names (Perl variable names are prefixed with a $ symbol).

System() command

MathsPIC ‘calls’ a Perl program (with appropriate parameters) via the system()
command. For example, the following mathsPIC commands (a) call the Perl program
drawcurvedarrow.pl to draw the curved arrow PQR with an arrowhead length 0-4
units, and places the commands in the file temp.txt, and (b) inputs the temporary file
which then contains the commands.

system("perl drawcurvedarrow.pl P Q R 0.4 temp.txt")
inputfile(temp.txt)

It is useful to include the filename as one of the parameters, since this allows us to write
the mathsPIC command to input the same file immediately afterwards. Note also that
since we are, in effect, using the command-line here then the parameters following the
program name must be separated by spaces, as required by Perl syntax.

CHAPTER 7. EXAMPLES 91

The mathsPIC file

The following example mathsPIC file uses the above commands to draw a curved arrow
from a box (just below the first point P) to an box (below the last point
R) as shown in Figure 7.14. Note the use of the [t] option at the end of two of the
text () commands which places the point at the [t]op of the \fbox{}.

%% mpicpm07-14.m (Figure 7.14)
\documentclass [adpaper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture

paper{units(lcm) xrange(0,5) yrange(0,4), axis(LRTB),ticks(1,1)}
point(P){1.25,1}

point(Q){P, polar(2, 65 deg)}

point (R){Q, polar(2,-40 deg)}

drawpoint (Q)

text (\fbox{START}) {P} [t]

text (Q){Q, shift(0,0.5)}

text (\raisebox{-5mm}{\fbox{END}}) {R} [t]
linethickness(1pt)

arrowshape (0.4cm, 30,40)

system("perl drawcurvedarrow.pl P Q R 0.4 temp.txt")
inputfile(temp.txt)

\endpicture

\end{document}

The temporary file

When the above mathsPIC file is run it creates (in the same directory) the following four-
line temporary ASCII text-file (named temp.txt) containing the mathsPIC commands
which actually draw the curve, and then inputs the file temp. txt into the mathsPIC
file for processing.

Point*(P999){pointonline(QP, -(PQ)/3)}
Point*(H999) {pointonline(R P999,0.4)}
Drawcurve (PQ H999)

drawArrow (H999 R)

Output file

The output TgX file which is generated by running the file mpicpm07-14.m through
mathsPIC is as follows. Towards the end of the file you can see the temporary file code
and the results after processing by mathsPIC located between the following two lines

%% ... start of file <temp.txt> loop [1]

%% ... end of file <temp.txt> loop [1]

The full output file is as follows.

CHAPTER 7. EXAMPLES 92

K
%* mathsPIC (Perl version 0.99.22 Dec 29, 2004)

%* A filter program for use with PiCTeX

%* Copyright (c) 2004 A Syropoulos & RWD Nickalls
%* Command line: mpic09922.pl mpicpmO07-14.m

%* Input filename : mpicpm07-14.m

%* Output filename: mpicpm07-14.mt

%* Date & time: 2005/01/05 09:30:55

Yk m
%% mpicpm07-14.m (Figure 7.14)

%% curved arrow

\documentclass[adpaper]{article}
\usepackage{mathspic}

\begin{document}

\beginpicture

%% paper{units(lcm) xrange(0,5) yrange(0,4), axis(LRTB),ticks(1,1)}
\setcoordinatesystem units <lcm,lcm>

\setplotarea x from 0.00000 to 5.00000, y from 0.00000 to 4.00000
\axis left ticks numbered from O to 4 by 1 /

\axis right ticks numbered from O to 4 by 1 /

\axis top ticks numbered from O to 5 by 1 /

\axis bottom ticks numbered from O to 5 by 1 /

%% point(P){1.25,1} P = (1.25000, 1.00000)
%% point (Q){P, polar(2, 65 deg)} Q = (2.09524, 2.81262)
%% point (R){Q, polar(2,-40 deg)} R = (3.62733, 1.52704)

%% drawpoint(Q)
\put {\bullet} at 2.09524 2.81262 %% Q
%% text (\fbox{START}){P}[t]
\put {\fbox{START}} [t] at 1.250000 1.000000
%h text(Q){Q, shift(0,0.5)}
\put {Q} at 2.095240 3.312620
%% text (\raisebox{-5mm}{\fbox{END}}){R}[t]
\put {\raisebox{-5mm}{\fbox{END}}} [t] at 3.627330 1.527040
%% linethickness(1pt)
\linethickness=1.00000pt\Linethickness{1.00000pt}’
\font\CM=cmr10 at 9.97226pt%
\setplotsymbol ({\CM .})%
%% arrowshape(0.4cm, 30,40)
%% arrowLength = 0.4cm, arrowAngleB = 30 and arrowAngleC = 40
%% system("perl drawcurvedarrow.pl P Q R 0.4 temp.txt")
%% inputfile(temp.txt)
%% ... start of file <temp.txt> loop [1]
%%% Iteration number: 1
%% point*(P999){pointonline(QP, -(PQ)/3)} P999 = (2.37699, 3.41683)
%% pointx*(H999){pointonline(R P999,0.4)} H999 = (3.40661, 1.86063)
%% Drawcurve (PQ H999)
\setquadratic
\plot
1.25000 1.00000 %P

CHAPTER 7. EXAMPLES 93

2.09524 2.81262 %Q
3.40661 1.86063 / %H999
\setlinear
%% drawArrow (H999 R)
\arrow <0.40000cm> [0.2679,0.7279] from 3.4066 1.8606 to 3.6273 1.5270
%% ... end of file <temp.txt> loop [1]
\endpicture
\end{document}

[ATEXing this file then generates the DVI file for Figure 7.14.

7.10.2 Example-2

Once the main working part of a Perl program has been debugged, then some finishing
touches can be added. In the following example (drawcube.pl; to draw a cube)
we have, therefore, made it a somewhat more sophisticated program by including
(a) error messages, (b) made it delete the temporary file automatically, (c) useful macros,
(d) added colour.

Note also how the one-line system() command in the mathsPIC file calling the
drawcube. pl program is processed into the temporary file necessary for drawing the
cube. This illustrates the value of being able to encode certain elements of a diagram as
a separate Perl program capable of receiving parameters, and so making it possible for
them to be used as and when necessary.

Delete temporary file

In Linux we can automatically delete the temporary file by writing the mathsPIC
command

system("rm temp.txt")

(where rm is the Linux command for ‘remove’).

Now, this can be done by the Perl program itself (providing the temporary file is not
to be input more than once), in which case it would have to output the above command.
However, in order for it to do this (i.e.,. for Perl to write itself a Perl command), the Perl
command would have to be written as follows:-

print (outfile qq(system("rm $filename")\n));

where the qq () command exports the argument in inverted commas, as required.

Useful macros

In addition, we have made the mathsPIC file more readable by creating the macros
¢er (), &side () and &filename () to hold the three parameters, namely center
point, the sidelength and the temporary filename. In this way we can pass P, s and
temp.txt as ¢er (P), &side(s) and &filename (temp.txt) (note that when
mathsPIC macros are used then they need to be prefixed with the & symbol).

%def center(j)j% %hcenter point
%def side(j)j% %hsidelength
%def filename(j)j% %/ temporary file name

CHAPTER 7. EXAMPLES 94

point (P){5,5} [symbol=\bigodot]

var s=4 %% sidelength

system("perl drawcube.pl ¢er(P) &side(s) &filename(temp.txt)")
inputfile(temp.txt)

Added colour

We have also made use of the I4TEX Color package and coloured the sides of the cube
blue, the diagonals red, and the points and labels black. Always load the color package
after the mathsPIC package.

MathsPIC program

All these improvements are implemented in the following example mathsPIC script &
Perl program drawcube . pl which draws a simple cube (side s) about a central point P
(see Figure 7.15).

%% mpicpm07-15.m (Figure 7.15)
\documentclass [adpaper]{article}
\usepackage{mathspic,color}
\begin{document}

\beginpicture

\normalcolor

paper{units(lcm) xrange(0,6) yrange(0,6), axis(LB),ticks(1,1)}
point (P){3,3}[symbol=\bigodot] Ycenter of the cube

%def center(j)j% %% center point

%hdef side(j)j% %% sidelength

%def filename(j)j% 4% temp filename

var s=3 %% sidelength

system("perl drawcube.pl ¢er(P) &side(s) &filename(temp.txt)")
inputfile(temp.txt)

\normalcolory

\endpicture

\end{document}

Note that the point-name P, side-length s, and filename temp.txt are all passed to
the Perl program as parameters using the system() command. The code of the Perl
program drawcube . pl is listed below.

Perl program (drawcube.pl)

#!/usr/bin/perl

drawcube.pl

pickup command line parameters P,s,filename
use: system("perl drawcube.pl P s3 temp.txt")

#
k.

my ($argnumber) = $#ARGV +1;
if ($argnumber !'= 3){
print " \n";
print "ERROR: drawcube.pl requires 3 arguments\n";

CHAPTER 7. EXAMPLES 95

print "USE: drawcube.pl <pointname> <sidelength> <filename> \n";
print " \n";
exit(1);

}

my ($point, $side, $filename)=Q@ARGV;

open (outfile, ">$filename")|| die "ERROR can’t create file $filename\n";
print (outfile <<EOF);

var r=$sidexsqrt(2)/2

var a=30 %} angle degrees
Point*(P990){$point, polar(r/2, (a-180) deg)}
Point*(P991){P990, polar(r, 45 deg)}
Point*(P992){P991, rotate(P990, 90)}
Point*(P993) {P991, rotate(P990, 180)}
Point*(P994){P991, rotate(P990, 270)}
Point*(P995){P991, polar(r, a deg)}

Point*(P996){P992, polar(r, a deg)}

Point*(P997){P993, polar(r, a deg)}

Point*(P998){P994, polar(r, a deg)}

%% draw the sides

\\color{blue}

drawline (P991 P992 P993 P994 P991, P994 P998 P995 P996 P992, P991 P995)
\\setdashes

drawline (P993 P997 P998, P997 P996)

%% draw the diagonals

\\color{red}

drawline (P991 P997, P992 P998, P996 P994, P995 P993)

%% draw the points and labels

\\setsolid\\color{black}

drawpoint ($point P991 P992 P993 P994 P995 P996 P997 P998)
text (\$$point\$){$point, shift(-0.5,-0.1)3}

text (\$P991\$) {P991, shift(-0.3,0.3)}

text (\$P995\$) {P995, shift(-0.3,0.3)}

now delete the temp file
print (outfile qq(system("rm $filename")\n));
close outfile

END

Note the use of the <<EQF...EOF environment in the Perl programme to contain the
chunk of mathsPIC code which is written to text file temp. txt. Note also that where
you want $ and \ characters written to the output file (temporary file—for use by
mathsPIC) by the Perl program, it is important to remember that these characters need
to be ‘escaped’ using a preceding backslash. In the above example the point name P is
held in the Perl variable $point; consequently since we need the Perl program to write
the mathsPIC command text (P) {P,shift(-0.5, -0.1)} to the temporary file
the Perl code needs to be text (\$$point\$) {$point, shift(-0.5,-0.1)}

CHAPTER 7. EXAMPLES 96

The temporary file

var r=s*sqrt(2)/2

var a=30 %% angle degrees

Point*(P990){P, polar(r/2, (a-180) deg)}
Point*(P991){P990, polar(r, 45 deg)}
Point*(P992){P991, rotate(P990, 90)}
Point*(P993){P991, rotate(P990, 180)}
Point*(P994){P991, rotate(P990, 270)}
Point*(P995){P991, polar(r, a deg)}
Point*(P996){P992, polar(r, a deg)}
Point*(P997){P993, polar(r, a deg)}
Point*(P998){P994, polar(r, a deg)}

%% draw the sides

\color{blue}

drawline (P991 P992 P993 P994 P991, P994 P998 P995 P996 P992, P991 P995)
\setdashes

drawline (P993 P997 P998, P997 P996)

%% draw the diagonals

\color{red}

drawline (P991 P997, P992 P998, P996 P994, P995 P993)
%% draw the points and labels
\setsolid\color{black}

drawpoint (P P991 P992 P993 P994 P995 P996 P997 P998)
text (P){P, shift(-0.5,-0.1)}

text ($P991$){P991, shift(-0.3,0.3)}

text ($P9953%) {P995, shift(-0.3,0.3)}

system("rm $filename")

Output file

When the mathsPIC script is run the output file is as follows.

hok ——mmmm e
%* mathsPIC (Perl version 0.99.22 Dec 29, 2004)

%* A filter program for use with PiCTeX

%* Copyright (c) 2004 A Syropoulos & RWD Nickalls
%* Command line: mpic09922.pl mpicpm07-15.m

%* Input filename : mpicpm07-15.m

%* Output filename: mpicpm07-15.mt

%* Date & time: 2005/01/05 09:46:22

A I
%% mpicpm07-15.m (Figure 7.15)
\documentclass[ad4paper]{article}
\usepackage{mathspic,color}

\begin{document}

\beginpicture
%% paper{units(lcm) xrange(0,6) yrange(0,6), axis(LB),ticks(1,1)}

CHAPTER 7. EXAMPLES 97

\setcoordinatesystem units <lcm,lcm>

\setplotarea x from 0.00000 to 6.00000, y from 0.00000 to 6.00000
\axis left ticks numbered from O to 6 by 1 /

\axis bottom ticks numbered from O to 6 by 1 /

%% point (P){3,3} [symbol=\bigodot] ‘center P = (3.00000, 3.00000)

%def center (j)j% %% center point

%def filename(j)j% %% temp filename
%def side(j)j% %% sidelength

%% var s=3 %J% sidelength

%h s =3

%% system("perl drawcube.pl P s temp.txt")
%% ... start of file <temp.txt> loop [1]
%%’ Iteration number: 1

Hoth—————= mathsPIC code——---———————————

%% var r=s*sqrt(2)/2
%% r = 2.12132034355964
%% var a=30 %% angle degrees

%% a = 30

%% point*(P990){P, polar(r/2, (a-180) deg)} P990 = (2.08144, 2.46967)
%% point*(P991){P990, polar(r, 45 deg)} P991 = (3.58144, 3.96967)

%% point*(P992){P991, rotate(P990, 90)} P992 = (0.58144, 3.96967)

%% point*(P993){P991, rotate(P990, 180)} P993 = (0.58144, 0.96967)

%% point*(P994){P991, rotate(P990, 270)} P994 = (3.58144, 0.96967)

%% point*(P995){P991, polar(r, a deg)} P995 = (5.41856, 5.03033)

%% point*(P996){P992, polar(r, a deg)} P996 = (2.41856, 5.03033)

%% point*(P997){P993, polar(r, a deg)} P997 = (2.41856, 2.03033)

%% point*(P998){P994, polar(r, a deg)} P998 = (5.41856, 2.03033)

%% draw the sides

\color{blue}

%% drawline (P991 P992 P993 P994 P991, P994 P998 P995 P996 P992, P991 P995)
\putrule from 3.58144 3.96967 to 0.58144 3.96967 % P991P992

\putrule from 0.58144 3.96967 to 0.58144 0.96967 %% P992P993

\putrule from 0.58144 0.96967 to 3.58144 0.96967 %% P993P994

\putrule from 3.58144 0.96967 to 3.58144 3.96967 %% P994P991

\plot 3.58144 0.96967 5.41856 2.03033 / %% P994P998

\putrule from 5.41856 2.03033 to 5.41856 5.03033 %% P998P995

0
0
3
0
5
\putrule from 5.41856 5.03033 to 2.41856 5.03033 %% P995P996

5

3

\plot 2.41856 5.03033 0.58144 3.96967 / %% P996P992
\plot 3.58144 3.96967 5.41856 5.03033 / %% P991P995
\setdashes

%% drawline (P993 P997 P998, P997 P996)

\plot 0.58144 0.96967 2.41856 2.03033 / %% P993P997

\putrule from 2.41856 2.03033 to 5.41856 2.03033 %% P997P998
\putrule from 2.41856 2.03033 to 2.41856 5.03033 %% P997P996
%% draw the diagonals

\color{red}

%% drawline (P991 P997, P992 P998, P996 P994, P995 P993)
\plot 3.58144 3.96967 2.41856 2.03033 / %% P991P997
\plot 0.58144 3.96967 5.41856 2.03033 / %% P992P998

\plot 2.41856 5.03033 3.58144 0.96967 / %/ P996P994

CHAPTER 7. EXAMPLES 98

\plot 5.41856 5.03033 0.58144 0.96967 / %% P995P993
%% draw the points and labels
\setsolid\color{black}

%% drawpoint (P P991 P992 P993 P994 P995 P996 P997 P998)

\put

{\bigodot} at 3.00000 3.00000 %% P

\put {\bullet} at 3.58144 3.96967 %I P991
\put {\bullet} at 0.58144 3.96967 %% P992
\put {\bullet} at 0.58144 0.96967 %% P993
\put {\bullet} at 3.58144 0.96967 %/ P994
\put {\bullet} at 5.41856 5.03033 % P995
\put {\bullet} at 2.41856 5.03033 %% P996
\put {\bullet} at 2.41856 2.03033 %% P997
\put {\bullet} at 5.41856 2.03033 %% P998
%t text (P){P, shift(-0.4,-0.1)}
\put {P} at 2.600000 2.900000
%% text ($P991$){P991, shift(-0.3,0.3)}
\put {$P991$} at 3.281440 4.269670
%% text ($P995$){P995, shift(-0.3,0.3)}
\put {$P995$} at 5.118560 5.330330
=== =
%% system("rm temp.txt")
%% ... end of file <temp.txt> loop [1]
\endpicture
\end{document}
and the diagram is shown in Figure 7.15.
6 —
P995
5 . .
I\ 9 7
1\ P991_~
44 - [N s
S e
3 R
20k N
P ' RN
2 //&—l\—-———\—\
4 -~
s - \
L //// \
0 T T T T T 1
0 1 2 3 4 5 6
Figure 7.15:

3-D cube drawn about a central point P (3, 3) and with sidelength s (s = 3). The

PDF and PostScript versions of the output show the sides coloured blue, the
diagonals red, and the points and labels black. The mathsPIC command used

was:-

system("perl drawcube.pl ¢er (P) &side(s) &filename(temp.txt)").

CHAPTER 7. EXAMPLES 99

7.10.3 Commands for processing the files

In Linux the command-line commands used to generate and print figure 7.15 were as
follows:

perl mathspic.pl mpicpmO7-15.m

latex mpicpm07-15.mt

xdvi mpicpm07-15.dvi %) to view dvi file

dvips -o mpicpm07-15.ps mpicpm07-15.dvi %) generate the .ps version
gv mpicpm07-15.ps %% view the .ps version

lpr mpicpm07-15.ps %% print the .ps version

Chapter 8

Accessing TEX parameter
values'

It is sometimes useful for mathsPIC to be able to access TgX parameter values. For
example, mathsPIC could be made to automatically scale the height and width of a
graph to the as yet unknown page size of the TgX document. Knowledge of the TgX
parameters \textheight and \textwidth during processing would allow the height
and width of a graph to be defined as a function of these page parameters.

One way of doing this is to include in the TgX file some code to write the required
parameter values to a temporary data file, in the form of mathsPIC var commands or
macros. Using the mathsPIC system () command mathsPIC can run the TgX file, and
then access the parameter values by inputting the data-file.

8.1 Useful TEX commands

\settowidth{\variablename}{text}
\settoheight{\variablename}{text}
\settodepth{\variablename}{text}

For example, the following code would put the length of the word January into the
variable \ janlength. Note that \the gives the value in points, while \number returns
the value as an integer in scaled points (see Table 8.1).

\newlength{\janlength}

\settowidth{\janlength}{January}

The length of the word January in points is \the\janlength

The length of the word January in ‘scaled’ points is \number\janlength

The output is as follows (note that \the\janlength returns the numeric points but
includes the characters pt on the end).

The length of the word January in points is 35.16676pt
The length of the word January in ‘scaled’ points is 2304689

"Much of this chapter was originally presented by RWD Nickalls to the November 2001 ukTUG meeting.

100

CHAPTER 8. ACCESSING TgX PARAMETER VALUES? 101

TEX has a number of parameters which are classified according to type, e.g. integers,
dimensions, glue, muglue, token lists. For a full list of all the TgX parameters which
have values which can be accessed see Knuth (1990; page 272-275).

The token list \ jobname is very useful as it holds the filename (but not the filename
extension) which TgX is currently working on, and can be used for generating derivative
temporary files, e.g. \ jobname.dvi, \ jobname.toc etc.

8.2 Outputting data to a file

TgX requires a file-number as a handle to identify an ‘open’ file, and has the command
\newfile specifically for allocating an unused file-number to a variable name. We then
use the commands \openout, \write, and \closeout to open, write to, and close the
file. For example, the following code will write .. .blah blah blah .. to the file
texfiledata.dat using the file handle \outfile.

\newwrite\outfile
\openout\outfile=texfiledata.dat
\write\outfile{...blah blah blah....}
\closeout\outfile

Note that the \write command only writes the data to the file when the .dvi file is
created, so if these commands are in a file which may not actually create a .dvi file,
then we may need to force output (dvi file creation) by including something writable
like \strut on a line.

Alternatively, we can force TEX to write to the file immediately (i.e. without waiting
until it gets to the end of file processing) by using the \immediate command, remem-
bering to include it with all the commands \openout, \write, and \closeout, as
follows.

\newwrite\outfile
\immediate\openout\outfile=texfiledata.dat
\immediate\write\outfile{...blah blah blah....}
\immediate\closeout\outfile

Since we are interested in accessing the values of TgX parameters, we need to explore
some of the TEX commands for accessing such values. For example, the commands
\the, \number and \showthe all reveal the numeric value, but in slightly different
formats and location, as follows.

\the\textwidth ---> 400.0pt includes the characters pt
\number\textwidth ---> 26214400 scaled points (see Table)
\showthe\textwidth ---> only writes to the log file

For the purposes of mathsPIC accessing the numeric value as a variable or macro,
it is most convenient to use the \number command (yields an integer value in the
‘scaled points’ used internally by TX)? and to incorporate it into a mathsPIC variable
or macro so it is ready to be used once the temporary file it is written to has been
input by mathsPIC. For example, the following code allocates the scaled point value of
\textwidth to the mathsPIC variable w555.

265536 scaled points = 1 printers point (pt).

CHAPTER 8. ACCESSING TgX PARAMETER VALUES? 102

\immediate\write\outfile{var w555 = \number\textwidth}

If the \textwidth was 400pt (14.058 cm), then the output of the above line would be
as follows (65536 scaled points = 1 printers point pt).

var wbbb = 26214400

In practice, it is useful to have this line commented to indicate which TgX parameter the
value relates to, as follows.

var wb55 = 26214400% \textwidth (scaled points)

However, since what came after the % symbol would be ignored in this setting, we
need to define the % as a character we can print to a file, by allocating it the catcode 12
(instead of the catcode of 14 which it normally has), and calling it by a different name
(\percentchar), and delimiting the whole line by a curley brace (to keep it local), as
follows.*

{\catcode‘\%=12 \global\def\percentchar{)}}%

So now, the following code will also include a trailing comment indicating the TgX
name of the parameter.

\newcommand{\comment}{\percentchar\space}
\immediate\write\outfile{var w555 = \number\textwidth
\comment\textwidth is \the\textwidth}

For example, the resulting line in the output file is as follows.

var wbb55 = 29368707, \textwidth is 448.1309pt

Table 8.1: Note that for accurate working always use scaled points
(sp) and convert in a single step using the following convertion factors
(modified from: Beccari C, 1991)

L s
mm 186467-98
cm 1864679-8
pt 65536
in 4736286-70

4From: Abrahams, Berry and Hargreaves (1990), p 292.

CHAPTER 8. ACCESSING TgX PARAMETER VALUES® 103

8.3 The final code

So now we can put all this code together into one chunk within the target TgX file,
or more usefully, keep it as a separate file which can then just be \input whenever
it is required. For example inputting the following file (and I&TEXing it) will output
a data file containing appropriate mathsPIC commands with the embedded values of
\textwidth and \textheight. Note that in the following example we have defined
two mathsPIC macros called textwidthcms and textheightcms which will contain
the relevant values in cms (see Table 8.1 for conversion factors).

%% grabtexdata.tex

\scrollmode Y% prevent LaTeX stopping if there are errors

% make a print command macro
\newcommand{\print}[1]{\immediate\write\outfile{#1}}

% _____________________

% make a comment % command macro

% first need to define percentchar for the write statement
% (From "TeX for the Impatient" (1990), p 292)

{\catcode‘\%=12

\global\def\percentchar{%}}%

\newcommand{\comment}{\percentchar\space}

)

% make a \macro command --> %def<space>
\newcommand{\mydef }{def}
\newcommand{\macro}{\percentchar\mydef\space}

% create and open a new file with filename = textfiledata.dat

\newwrite\outfile

\immediate\openout\outfile=texfiledata.dat

%% write file header & general info
\print{\percentchar\percentchar\space file: texfiledata.dat}
\print{\percentchar\percentchar\space accessing TeX parameter values}

%% now get \textwidth and \textheight values from the tex file

\print{var wb55 =
\print{var w556
\print{var wb57 =

\print{\comment ==

\number\textwidth\comment\textwidth=scaled points}
\number\textwidth\comment\textwidth=\the\textwidth}
\number\textwidth/1864679.8\comment (\textwidth in cms)}

\print{\macro textwidthcms () \number\textwidth/1864679.8\comment}
\print{\macro textheightcms()\number\textheight/1864679.8\comment}

\print{\comment ==

% close the file

\immediate\closeout\outfile

In practice one would simply include the following line

\input{grabtexdata.tex}

CHAPTER 8. ACCESSING TgX PARAMETER VALUES’ 104

in the TgX file we want data from (say, myfile. tex), and then IATEX the file to generate
the output data file. Alternatively we could IATEX the file from within mathsPIC using
the system command, and then input the resulting data file as follows.

system(‘‘latex2e myfile.tex’’)
input (texfiledata.dat)

Either way, the resulting output data file texfiledata.dat for a file having a standard
{articlel} format is as follows

%% texfiledata.dat

%% accessing TeX parameter values

var wb55 = 22609920% \textwidth =scaled points
var w56 = 22609920} \textwidth =345.0pt

var wb57 = 22609920/1864679.8} (\textwidth in cms)
A —

%def textwidthems()22609920/1864679.8%

%def textheightcms()39190528/1864679.8,

Y ============

Once the above file (texfiledata.dat) is input into a mathsPIC file we can then use
mathsPIC commands to manipulate the textwidth and textheight values, as shown in the
following example mathsPIC file.

\documentclass[adpaper]{article}
\usepackage{mathspic}

\begin{document}

system(‘‘latex2e myfile.tex’’)
inputfile(texfiledata.dat)

var w=&textwidthcms, w2= &textwidthcms/2
var h=&textheightcms, h2=&textheightcms/2

\end{document}

Processing the mathsPIC file gives the folllowing output. Notice how useful it is to
have the accompanying comments.

%% inputfile(texfiledata.dat)

%% ... start of file <texfiledata.dat> loop [1]
%%% Iteration number: 1

%% texfiledata.dat

%% accessing TeX parameter values

%% var wb55 = 22609920% \textwidth =scaled points
%% wbb5 = 22609920

%% var wb56 = 22609920% \textwidth =345.0pt

%% wbb6 = 22609920

%% var wbb7 = 22609920/1864679.8% (\textwidth in cms)
%% wbb7 = 12.1253632929364

Y ============

%def textwidthcms()22609920/1864679.8Y%

%def textheightcms()39190528/1864679.8

CHAPTER 8. ACCESSING TgX PARAMETER VALUES?

Y ============

%% ... end of file <texfiledata.dat> loop [1]

%% var w=22609920/1864679.8, w2= 22609920/1864679.8/2
%h w = 12.1253632929364

%h w2 = 6.0626816464682

%% var h=39190528/1864679.8, h2=39190528/1864679.8/2
%%h h = 21.0172963744231

%% h2 = 10.5086481872116

105

Chapter 9

Miscellaneous

9.1 Acknowledgements

The authors are grateful to Mikael Moller for extensive testing of mathsPIC,,,, with
the ActiveState Win32 implementation of Perl (known as ActivePerl). We also thank
Joachim Schneider for highlighting a significant system bug (fixed February 2007).

We are also grateful to a large number of people for testing the earlier MS-DOS
version of the program, and for their many helpful ideas and suggestions, including:
FrantiSek Chvéla, Bob Schumacher, Orlando Rodriguez, Glen Ritchie, Boris Kuselj,
Raj Chandra, Ju-myoung Kim, Munpyung O, Rex Shudde, Tobias Wahl.

9.2 Feedback

The authors welcome feedback regarding bugs and platform specific issues, as well as
comments, ideas and collaboration with a view to improving this program.

9.3 Development history

Perl version

e version 1.13 (April 26, 2010): bug-fix release
— fixed right-angle macro bug & typos

e version 1.11 (June 2009): bug-fix release
e version 1.10 (February 2007): bug-fix release

e version 1.00 (February 2005): First Perl-version release

MS-DOS version—not supported
e d2.1 (November, 2000): Second MS-DOS-version release

e d1.7u (September 1999): First MS-DOS-version release.

106

Appendix A

Tables

Table A.1: Equivalent PICTEX commands for a 10-point font

rules (horizontal/vertical) all other lines

\linethickness=1.35pt | \setplotsymbol({\Large .})
\linethickness=1.1pt \setplotsymbol ({\large .1})
\linethickness=0.9pt \setplotsymbol ({\normalsize .})
\linethickness=0.4pt \setplotsymbol ({\tiny .3})

107

APPENDIX A. TABLES 108

Table A.2: Useful point-symbols and their radii for 10-12pt fonts.

radius mm
symbol symbol package
10pt / 11pt/ 12pt
\circ o | 0.70/0.7570.80 standard
\odot ® | 1.20/1.35/1.50 standard
\oplus @ | 1.20/1.35/1.50 standard
\ominus © | 1.20/1.35/1.50 standard
\oslash @ | 1.20/1.35/1.50 standard
\otimes ® | 1.20/1.35/1.50 standard
\bigcirc O] 170/1.85/2.05 standard
\bigodot ® | 1.70/1.85/2.05 standard
\bigoplus @b | 1.70/1.85/72.05 standard
\bigotimes ® | 1.70/1.85/2.05 standard
\star * — standard
\triangle A — standard
\square U — amssymb.sty
\blacksquare | — amssymb.sty
\lozenge O — amssymb.sty
\blacklozenge ¢ — amssymb.sty
\bigstar * — amssymb.sty
\boxdot tl — amssymb.sty
\boxtimes X — amssymb.sty
\boxminus H — amssymb.sty
\boxplus H — amssymb.sty
\divideontimes | — amssymb.sty

109

APPENDIX A. TABLES

¥0'68% 178 000°T 00°CI LLLTO 0LO‘T 6LC1 ¥8°Cl | €ISY0 %% 9]
9804C1 0L €€€80°0 | 000°1 IS¥10°0 | LI1680°0 | 990°T 0LO'T | 09LE0'0 | 09LED PPI
L'98T9ELY | 8T9°C ¥S°L9 000°T €20°9 00°CL LTTL | O¥S'T 0v'se urg
Cev 98L 9r€6°0 ITT1 0991°0 000°T 96°'T1 00°CI | 8IT¥0 81Ty od g
9L'T8LS9 LISLO'O | 18€6°0 | 68E€10°0 | S9€80°0 | 000°1 00T | 8TSE0'0 | 8TSE0 dq
9¢6 S9 88LL0°0 | 9¥E6'0 | PSETO0 | €€€80°0 | €9660 | 000°T | SISE00 | SISE0 dy
86,9198 1 | 91CTC 65°9C LE6ED 1LET SE8T S¥'8T | 000°T 00°01 wo [
86°L9¥ 981 912C'0 659°C LE6EDD | TLETO [S54 S8C | 001°0 000°T i
ds 20 PP ut od dq ad wo ww

(uorssruured yim (1661) eI
wol) “XdIy] AQ pasn sjun Yy} I0J SIOIOBJ UOISISAUO)) ¢V 9[qeL

Appendix B

Arrows

The mathsPIC code for drawing the following figure is given below.

Arrowshape(L,B,C)
B = angle By AB; degrees C1

— L —
C = angle C1 AC5 degrees
B
D e A
By

————{;}»- Arrowshape(6,30,60)
——————%}» Arrowshape(4,30,60)
——> Arrowshape(2,30,60) Cs
————{E}> Arrowshape(6,30,40)
———= Arrowshape(4,30,40)
——> Arrowshape(2,30,40) default

%% mpicpm07-3.m (Figure 7.3)
\documentclass [adpaper]{article}
\usepackage{mathspic}
\begin{document}

\beginpicture

paper{units(imm), xrange(0,100), yrange(0,70), axes(LBTR)}
%% first do all the small arrows (from top down)
point(J11){5,30}

point (J12){20,30}

point (J9){5,25}

point (J10){20,25%}

point (J7){5,20}

point (J8){20,20%}

110

APPENDIX B. ARROWS

point (J5){5,15}
point (J6){20,15%}
point (J3){5,10}
point (J4){20,10}
point (J1){5,5%}
point (J2){20,5%}
%o
arrowshape (6,30,60)
drawArrow(J11J12)
arrowshape (4,30,60)
drawArrow (J9J10)
arrowshape (2,30,60)
drawArrow (J7J8)
arrowshape (6,30,40)
drawArrow (J5J6)
arrowshape (4,30,40)
drawArrow (J3J4)
arrowshape (2,30,40)
drawArrow (J1J2)
Hoth

text (\texttt{Arrowshape(2,30,40) \ default}){J2,shift(5,0)}[1]

text (\texttt{Arrowshape(4,30,40)}){J4,shift(5,0)}[1]
text (\texttt{Arrowshape(6,30,40)}){J6,shift(5,0)}[1]
text (\texttt{Arrowshape(2,30,60)}){J8,shift(5,0)}[1]
text (\texttt{Arrowshape (4,30,60)}){J10,shift(5,0)}[1]
text (\texttt{Arrowshape(6,30,60)}){J12,shift(5,0)}[1]
Dot

%% now draw big arrow

point (D){30,40}

point (A){D,shift(62,0)}

arrowshape (20,50,75)

drawArrow (DA)

point(B1){82,44.75}

point (B2){82,35.25}

point(C1){72,55}

point (C2){72,25}

drawpoint (DAB1B2C1C2)

text (A){A, shift(4,0)}

text(B_1){B1, shift(3,3)}

text (B_2){B2, shift(3,-3)}

text (C_1){C1, shift(-4,3)}

text (C_2){C2, shift(0,-4)}

text (D){D, shift(-4,0)}

Dot

point(T1){10,63}

point(T2){10,57}

point(T3){10,51}

text (\texttt{Arrowshape (L, B,C) }){T1}[1]

text (B = \mbox{angle B_1AB_2 degrees}){T2}[1]
text (C = \mbox{angle C_1AC_2 degrees}){T3}[1]

111

APPENDIX B. ARROWS 112

%

\betweenarrows {L} from 74 55 to 92 55
\endpicture

\end{document}

Appendix C

Positioning the figures

C.1 Generating PS, EPS, PDF, JPEG files.

Once a diagram or figure has been finished it can be easily placed in a document using
either an EPS (DVI document) or PDF (I4TEX document). Being able to generate a JPEG
version is also useful since, unlike EPS or PDF files, this can be readily manipulated
and converted to other image formats using the GIMP.!

PS, EPS, PDF

If only a PDF version is required, then this is easily done via PDFIATEX. For example, if
the mathsPIC file is, say, picture.m, then the commands would be as follows:

mathspic picture.m
pdflatex picture.mt

However, the process of trimming excess white space can be most conveniently
done via dvips. The process of editing and viewing can be conveniently automated
using a BASH script, such as the following, which runs mathsPIC, trims the image to
the bounding box (BBox) and generates the associated PS, EPS and PDF files.

makefigs.sh

use: bash makefigs.sh filename [no filename extension]
mathspic $1.m

latex $1.mt

dvips $1.dvi -o $1.ps

dvips -E $1.dvi -o $1.eps ## determines the BBox -->eps
epstopdf $1.eps

echo ... end of run

For example, to process the mathsPIC file myfile.m, one would type the command
$ bash makefigs.sh myfile

remembering not to include the filename extension here (since the script needs to append
different filename extensions for the different processes).

"Peck A (2008). Beginning GIMP. 2nd ed. (Apress); http://www.apress.com/.

113

http://www.apress.com/

APPENDIX C. POSITIONING THE FIGURES 114

JPEG

In order to make a JPEG file we make use of (a) the Perl program fitps12.pl (origi-
nally made by S. Rahtz (1996) and modified slightly? by Apostolos Syropoulos (2006)
as version 1.2), and then (b) GhostScript, as follows:

makefigs.sh

use: bash makefigs.sh filename [no filename extension]
mathspic $1.m

latex $1.mt

dvips $1.dvi -o $1.ps

dvips -E $1.dvi -o $1.eps ## determines the BBox -->eps
perl fitps12.pl $1l.eps $1.EPS ## outputs a modified EPS file
gs -sDEVICE=jpeg -r400 -sOutputFile=$1.jpg $1.EPS

echo ... end of run

Note that in the above example, the GhostScript command (gs) inputs the modified EPS
file, and generates a JPEG file with resolution 400 dpi. See the GS help file for details
(type gs --help). Resolutions 300 or 400 are generally fine for most purposes. See
the Ghostscript man page and also

/usr/share/doc/HOWTO/HTML/en/Printing/ghostscript.html

C.2 Using the figure environment

A mathsPIC diagram or figure can also be placed in a document by including the PICTEX
code directly in the main document within the \begin{figure}...\end{figure}
environment, or by \inputting the code as a separate file. Note, also, the various
extension packages available for facilitating the placement of pictures and images
(e.g., the subfigure package).

For example, if the mathsPIC file was called mypic.m and this generated the output-
file mypic.mt, then one would comment-out the I4TEX headers and footers from the
.mt file, keeping just the part of the file within the \beginpicture...\endpicture
environment (renaming it, say, mypic.pic) as follows.

%% this is file mypic.pic
\beginpicture

\endpicture

The mypic.pic file can then be \input into a document as a centered Figure as
follows. Always use the \centering command as this avoids the additional vertical
space added by the \begin{center}...\end{center} environment.

\begin{figurel} [hbt]
\centering

2The original version required that there was exactly one space between each of the BBox values. This
was a problem, since if you manually adjusted the BBox values, then the spacing could easily end up being
slightly different, and the program would then fail. The new version is more flexible, and tolerates any number
of spaces.

APPENDIX C. POSITIONING THE FIGURES 115

\strut\input{mypic.pic}

\caption{...}

\label{...}
\end{figure}

It is often useful when adjusting the position of a Figure on the page to initially
place the Figure inside a frame in order to see the exact extent of the Figure. To do this
just replace the \input line above with the following:

\strut\framebox{\input{mypic.pic}}

Sometimes more flexibility is needed regarding positioning the \caption, in which
case a \parbox or aminipage is useful, as follows:

\begin{figurel} [hbt]

\centering
\strut\input{mypic.pic}
\begin{minipage}{8cm}

\caption{\label{}...... }
\end{minipage}
\end{figure}

Note that the general convention is that Tables have the caption at the top while
Figures have the caption underneath the Figure.

Getting the vertical position and horizontal width of the caption just right can be
awkward. However, using a minipage gives a lot more flexibility as in the following
example, which defines the \captionwidth in terms of the \textwidth. Note also
that here the \caption{} is empty—it is here just to trigger the Figure counter—we
place the actual caption in the minipage.

\newcommand{\captionwidth}{0.8\textwidth}
YA
\begin{figurel} [hbt]
\centering
%\framebox{
\strut \input{mypic.pic}
h}

[empty line]
\vspace\baselineskip
\begin{minipage}{\captionwidth}

\caption{\label{fig:fcubic}}%
{blah blah...}
\end{minipage}
\end{figure}

When typesetting text and a figure side-by-side the following format for using two
adjacent minipages works quite well.

\begin{figure} [hbt]
\noindent
\begin{minipage}{4cm}

APPENDIX C. POSITIONING THE FIGURES 116

%% put some text or a figure here

\end{minipage}
\hspace{3cm} %% controls the horizontal space between Figures

\begin{minipage}{4cm}
\vspace{3mm}
\strut\hspace*{...}\input{circle.pic}
\vspace{...} ¥ adjusts vertical position of caption
\caption{\label{}...}
\end{minipage}

\hfill
\end{figure}

Finally, it is often necessary to have two figures side-by-side, each with separate
sub-captions, in which case the following rather similar format is useful—this was the
construction used for displaying the two figures of Figure 8. Note the commented-out
\framebox{} commands; these are very useful for revealing the full extent of any white-
space surrounding the separate figures, since such unwanted white-space is probably
the most common cause of difficulty when trying to position and center figures in a
document. Note that while the \centering command can be used inside a Figure, the
\begin{center}...\end{center} environment has to be used within a minipage.

\begin{figurel} [hbt]
\centering

\noindent %\framebox{

\begin{minipage}{3cm}
\begin{center}
%\vspace{...} %% controls space above picture
\input{mpicmO8a.pic}
#\vspace{...} %% controls space between picture and caption
a. Circular arrows
\end{center}

\end{minipage}

%} %end of framebox

\hspace{12mm} %% controls horiz space between figs
% \bigskip\bigskip %% use this to adjust vertical space
% ______________________
%\framebox{
\begin{minipage}{5cm}
\begin{center}
%\vspace{...} %% controls space between picture and caption
\input{mpicm08b.pic}
%\vspace{...} % controls space between pict and caption
b. Straight arrows

APPENDIX C. POSITIONING THE FIGURES 117

\end{center}
\end{minipage}
%} %end of framebox

\caption{\label{}....}
\end{figure}

C.3 Using the P[CIEX code

A mathsPIC diagram or figure can also be placed in a document by including the PICTEX
code directly in the main document within the \beginpicture...\endpicture envi-
ronment, or by \inputting the code as a separate file. For example, if the mathsPIC
file was called mypic.m and this generated the output-file mypic.mt, then one would
comment-out everything except the picture environment itself, and renaming it, say,
mypic.pic, as follows.

%% this is file mypic.pic
\beginpicture

\endpicture

The mypic.pic file can then be \input into a document as a centered Figure as
follows.

\documentclass [adpaper]{article}
\usepackage{mathspic}

\begin{figurel} [hbt]
\centering
\strut\input{mypic.pic}
\caption{...}
\label{...}
\end{figure}

Finally, it is important to note that if this approach is used, then it would be necessary
to comment out from the mathspic. sty file the I4TEX command \thispagestyle{empty}
in order to enable page numbering on the first page of the document.

Appendix D

Installing Perl in MS-Windows

Perl is available for all MS-Windows platforms, and there are several Perl implementa-
tions to choose from. A good choice (which we describe here) would seem to be the free
ActiveState implementation of Perl in view of their excellent web site, documentation
and other resources.

D.1 Perl

The free ActivePerl implementation is a well regarded choice of Perl for the Win32
platform, and is easy to download and install. The current version for download at the
time of writing is Perl 5.8.6. There is excellent web support (e.g. documentation etc)
via their ASPN website (ActiveState Programming Network).

e http://www.activestate.com/Products/ActivePerl/

e http://aspn.activestate.com/ASPN/docs/ActivePerl/
The complete ActivePerl package consists of the following:-

e Perl (binary core Perl distribution)

e An installer package

Perl Package Manager (PPM—a Perl extension installer and manager)

e Documentation

Perl ISAPI (IIS plug-in that enhances the speed of standard Perl)

PerlScript (ActiveX scripting engine)

PerlEz (embedded Perl)

Installation

A useful installation guide can be found at http://www.activestate.com/ASPN/
docs/ActivePerl/install.html.

In addition to the Perl system itself, the older Windows systems 2000/NT also
require you to download a special ‘installer’ package (instMsiW.exe) to implement
the installation (see below). Note that the filename and sizes indicated below are those
at the time of writing.

118

http://www.activestate.com/Products/ActivePerl/
http://aspn.activestate.com/ASPN/docs/ActivePerl/
http://www.activestate.com/ASPN/docs/ActivePerl/install.html
http://www.activestate.com/ASPN/docs/ActivePerl/install.html

APPENDIX D. INSTALLING PERL IN MS-WINDOWS 119

Step 1:

First, create a temporary directory for files which need to be downloaded. Then go
to the ActiveState web-site (http://www.activestate.com/) and click on the Lan-
guage/ActivePerl link which will take you to the ActivePerl page. Follow the ‘download’
links until you reach the ‘download’ page (you can skip the ‘contact-info’ section by
clicking the ‘next’ button), and then read the Windows section for the latest version of
ActivePerl (version 5.8.6).

Step 2:

Download the latest ActivePerl .msi file (approx 12 MB).
For example, ActivePerl-5.8.6.811-MSWin32-x86-122208.msi

Step 3:

Installation: the exact procedure depends on your particular Windows system as detailed
below. The default installation is the recommended ‘complete’ installation.

e Windows XP/2003:

To install simply double click on the ActivePerl .msi file and follow the instruc-
tions (these systems do not require a separate installer file).

Running Perl

Now that Perl is installed, we can progress to creating and running a Perl program. To
create a Perl program, simply open your favorite text-editor (see below for information
on some suitable text-editors) and write the program (as an ASCII text file), and finally
save it with a .pl extension.

For example, open a new file and type the following into it, and then save it with the
file-name test.pl (note that in Perl the # sign is the ‘comment’ symbol; the \n starts a
new line; variable names start with a \$).

#!/usr/bin/perl

test.pl
print "hello world\n";
$a=3, $b=7;

$sum=%a + $b;
print "sum = $sum\n";

When this is run it will show the following output

hello world
sum = 10

We can run this Perl program several ways, as follows.

e Use the command-line:

Open a DOS box, move to the required directory, and at the command-line prompt
type the following command, and then press <enter>

perl test.pl

http://www.activestate.com/

APPENDIX D. INSTALLING PERL IN MS-WINDOWS 120

The output generated by the program will be written to the screen in the usual
way. If you want the output written to a file (say. test.txt) then instead type
perl test.pl > test.txt

e Click on the filename

If you just click on the filename in the directory listing (provided it has the .pl
filename extension) then ActivePerl will automatically open a DOS box, run
the program, and then close the DOS box. This is fine if the program output is
directed to a file, but if the output is simply directed to the screen (the default)
then you need to add the <> command at the end of the file, as this will keep the
screen open (so you can read the screen) until you hit a key.

#!/usr/bin/perl

test.pl

print "hello world\n";

$a=3, $b=7;

$sum=%a + $b;

print "sum = $sum\n";

print "press any key to exit\n";
<>

e Using a batch file:

Create a separate batch file with the name, say, test . bat containing the following
lines:

perl test.pl %1 %2

This batch file now has to be run at the command-line as shown above. Note that
ActivePerl can create a batch file from an ordinary perl program by using the
command utility p12bat.bat. Simply access the command-line and type

pl2bat test.pl

which will then generate the file test . bat which can then be run at the command-
line by just typing test.

Perl modules

Additional modules can be downloaded from the huge Perl archives available on the
internet. These Perl modules can be installed either automatically (via the internet using
the PPM utility), or manually (download the module and then use the nmake utility). The
nmake utility is a Microsoft port of the Unix make utility, and can be downloaded from
the Microsoft internet archive at ftp://ftp.microsoft.com/Softlib/MSLFILES/.
The current version is bundled in the self-extracting package nmake15.exe

Useful Perl links

e [ntroduction to Perl on Windows.
http://www.wdvl.com/Authoring/Languages/Perl/Windows/

ftp://ftp.microsoft.com/Softlib/MSLFILES/
http://www.wdvl.com/Authoring/Languages/Perl/Windows/

APPENDIX D. INSTALLING PERL IN MS-WINDOWS 121

e CPAN Perl Ports (binary distributions).
http://www.cpan.org/ports/index.html

e How to install Perl modules.
http://www.cpan.org/modules/INSTALL.html

e Perl documentation.
http://www.perldoc.com

D.2 Text editors

Crimson Editor (free)

This is a good straight-forward ‘all-purpose’ editor for Win-32 platforms, with good
syntax highlighting, available from http://crimson.emeraldeditor.com/

WinEdt (shareware)

This is an excellent ‘all-purpose’ text editor designed for use with TgX and I&TEX; it has
syntax highlighting and can be tailored for use with Perl. It is available for download
from http://www.winedt.com/. Note that a free licence for this editor is provided
as a membership benefit by many TgX User Groups (e.g. ukTUG).

WinEDIT

The WinEDIT PowerPack is an excellent (commercial) general purpose text editor
available for download (21-day free trial) from http://www.winedit.com/. Itis very
similar to WinEdt, and has the useful facility for column copying/pasting, and also an
optional vertical window holding the directory tree.

GNU Emacs (free)

This is a public domain (free) text editor. It is available from the GNU distribution
page as follows http://www.gnu.org/software/emacs/windows/. See also Harry
Halpin’s excellent web page entitled How fo install Perl and Emacs on a Windows
machine which can be found at http://lcb.unc.edu/software/perl/perl.html.

http://www.cpan.org/ports/index.html
http://www.cpan.org/modules/INSTALL.html
http://www.perldoc.com
http://crimson.emeraldeditor.com/
http://www.winedt.com/
http://www.winedit.com/
http://www.gnu.org/software/emacs/windows/
http://lcb.unc.edu/software/perl/perl.html

Appendix E

PICIEX

P[CIEX is an excellent small graphics package, which is available on the TgXLive DVD
and from CTAN. If you have a recent TgX installation then it is likely that PICTEX is
already installed'. If PICTEX is not installed, then create a PICTEX subdirectory in your
‘local’ TEX space, typically at

/usr/local/texlive/texmf-local/tex/latex/local/pictex/

Now copy into this new subdirectory all the PICTEX files in the following CTAN
directories:

CTAN:/tex-archive/graphics/pictex/
CTAN:/tex-archive/graphics/pictex/addon/

Unfortunately, the PJCTEX Manual is not available from CTAN—the manual has
to be purchased separately (see Section E.6). However, mathsPIC users will mostly
find this unnecessary, since those PICTEX commands which are particularly useful in
conjunction with mathsPIC are described here in Chapter 5.

In the following, we present some background, including details about how to obtain
a copy of the PICIEX manual.

E.1 The original files (1986)

CTAN/tex-archive/graphics/pictex/

The original PICTEX package by Michael Wichura (21/09/1987) originally consisted
of the 4 files listed below. On the left is the MS-DOS name (truncated to 8 characters),
and on the right is the full UNIX name).

The file 1atexpic.tex gives Plain TEX users the option of using the I4TEX Pic-
ture macros \line, \vector, \circle, \oval, \thicklines and \thinlines (for
syntax and use with PICTEX see Wichura, 1992).

ICheck for any PICTX directories by typing the command $ locate pictex

122

APPENDIX E. PICTEX 123

Note that only two of the following files are required when using plain TgX, while
three files are required when using IATEX.

latexpic.tex 11243 bytes (latexpicobjs.tex - for plain TeX only)

prepicte.tex 1293 bytes (prepictex.tex - for LaTeX)
pictex.tex 133388 bytes (pictex.tex - for LaTeX & plain TeX)
postpict.tex 1614 bytes (postpictex.tex - for LaTeX)

The three files required for use with I4TEX need to be loaded (input) in the order
shown above. Note that when using PICTEX with IATEX 2¢ it is necessary to redefine the
IATEX 2.09 command \fiverm (because PICIEX was originally written for I4TEX 2.09).
This is most easily done as follows (and hence it is included in the mathspic. sty file).

\newcommand{\fiverm}{\rmfamily\tiny}

Alternatively you can use the more robust method (i.e. for wizards) suggested by
Michael J Downes as follows (I believe Michael Downes suggested this originally on
the comp.text.tex usenet group—see also the file fntguide.tex among the IATpX 2¢
documents).

\declarefixedfont{\fiverm}{\encodingdefault}{\rmdefault}{m}{n}{5}

A significant problem with the original PICIEX package was that it was very memory
hungry. However, in 1994 this problem was overcome by a significant rewrite by
Andreas Schrell, as described in the next section.

E.2 The new updated files (1994)
CTAN/tex-archive/graphics/pictex/addon/

In 1994 Andreas Schrell uploaded a set of updated PICIEX files into the
CTAN: .../graphics/pictex/addon/ directory. One of these additional files of
Schrell’s (pictexwd.tex) is a replacement for the original (pictex.tex), and is
extremely economic in its use of TEX’s dimension registers, allowing significantly better
memory usage with exactly the same functionality. The other files correct some errors
(piccorr.sty), and add new functionality (picmore.tex).

pictexwd.sty 416 bytes
pictexwd.tex 133232 bytes
picmore.tex 2952 bytes
piccorr.sty 4608 bytes
pictex.sty 311 bytes

e pictexwd.sty
For IATEX users. This replaces pictex.sty. Itinputs prepictex.tex, pictexwd.tex,
and postpictex.tex, as well as inputting piccorr.sty and picmore.tex if
these are available.

e pictexwd.tex

For TgX users.

APPENDIX E. PICTEX 124

e picmore.tex

An extension for drawing impulse diagrams.

e piccorr.sty

A correction for the original PICTEX \betweenarrows command.

e pictex.sty

The I4TEX style-option for loading the original PICIEX files. Note that it also
inputs piccorr.sty and picmore.tex if these are available.

All the necessary files required for running P[CTEX are automatically input in the correct
order by pictexwd.sty (I4TEX users), or by pictexwd.tex (TgX users). Users of
[ATEX 2¢ should include the following command in the preamble.

\usepackage{pictexwd}
Users of plain TgX need to include the following.

\input latexpic.tex
\input pictexwd.tex

Note that even when using Andreas Schrell’s new files, all the original PICIEX files are
still required.

E.3 Pictex2.sty

CTAN/tex-archive/macros/latex/contrib/supported/pictex2.sty
16418 bytes 09/05/1999

William Park has written a style option (pictex2.sty) which adds two useful
commands to standard P[CTgX, which force the use of the \putrule command where
lines are either horizontal or vertical, thus saving on memory (note that mathsPIC
automatically implements the use of \putrule in these circumstances). These two
commands are as follows.

e \putanyline
This command invokes the PICTEX \putrule command (instead of \plot) in
cases where lines are either vertical or horizontal.

e \setanyline

This is a line-drawing mode (similar to \setlinear) which forces subsequent
\plot commands to invoke \putrule whenever the line is either horizontal or
vertical.

E.4 Errorbars.tex

CTAN/tex-archive/graphics/pictex/errorbars.tex
3041 bytes 20/04/1988

APPENDIX E. PICTEX 125

In 1988 Dirk Grunwald implemented a new PICTEX command for drawing error bars
using a modified \plot command, as follows.

e \plotWithErrorBars

This command, which is case sensitive, has the format

\plotWithErrorBars mark M at
xl y1 el

xn yn en /

where M is a TgX character (e.g. \bullet), and e is the size of vertical error
bars which are plotted above and below the point. The default cross-bar length is
Spt, but can be changed, say to 7pt, using the command \crossbarlength=7pt.

To use this command, input the file errorbars. tex after all the PICIEX files.

E.5 DCpic

DCpic (by Pedro Quaresma) is a package of TgX macros for drawing commutative
diagrams in a IATX or ConTEX document. It uses PICIEX to implement commands
which manipulate its various ‘objects’ and arrows. This package (February 2002) is
available on CTAN (and TgXLive) at

CTAN: tex-archive/macros/generic/diagrams/dcpic/
and includes the following documentation files:

manPT_dcpic.pdf
man_dcpic.pdf

E.6 The P[CIEX Manual

I would recommend purchasing the excellent The PICIEX Manual by Michael J. Wichura
(The University of Chicago, Chicago, Illinois, USA). This small booklet (version 1.1,
third printing, March 1992; 85 pages) used to be available from TUG as Publication No.
6 in the TUG TXniques series. Unfortunately, TUG (http://www.tug.org/) has now
stopped publishing the manual, and so The PICTEX Manual is currently only available
from Personal TeX Inc. (texsales @pctex.com,
http://www.pctex.com/books.html).

Summary of the manual

Probably the most useful alternative document is the excellent and detailed 8-page
summary of PICTEX commands made by Angus Duggan (1990), available on CTAN (as
summary.zip) at

CTAN: ../info/pictex/summary/pictexsum.pdf

CTAN: ../info/pictex/summary/pictexsum.tex (Latex209 version)
CTAN: ../info/pictex/summary/useful.sty

CTAN: ../info/pictex/summary/ukdate.sty

http://www.tug.org/

APPENDIX E. PICTEX 126

These are also included in the CTAN section of the TgXLive-2010 DVD. Note that both
of the style files useful.sty and ukdate. sty are required to easily latex his .tex
file.

A short 3-page German summary by Siart (2008) is available at
http://www.siart.de/typografie/pictex-referenz.pdf

Other info

Lueck (2008) is a useful list of further information. Note some other documentation is
available on the TgXLive-2010 DVD, and is typically installed at the following locations:

/usr/local/texlive/2010/texmf-dist/doc/generic/FAQ-en/html/FAQ-docpictex.html
/usr/local/texlive/2010/texmf-dist/doc/generic/FAQ-en/html/FAQ-usepictex.html
/usr/local/texlive/2010/texmf-dist/doc/generic/doc-pictex
/usr/local/texlive/2010/texmf-dist/doc/generic/doc-pictex/Doc-PiCTeX.txt

References

e Abrahams P. W., Berry K. and Hargreaves K. A. (1990). TgX for the impatient.
(Addison-Wesley).

e Cameron P. J. (1992). Geometric diagrams in I2TgX. TUGboat 13 (No. 2),
215-216.

e Beccari C. (1991). LaTeX — Guida ad un sistema di editoria elettronica. (Editore:
Ulrico Hoepli, Milano.) 1SBN:88-203-1931-4. (for details see: TgX and TUG News
(1992); Vol 1, No 1: p 14. CTAN: /tex-archive/digests/ttn/ttnlinl.tex)

e Duggan A. (1990). PICIEX command summary (summary.zip) [note you need
both style files to process the tex file (latex 209)]
CTAN: ../tex-archive/info/pictex/summary/pictexsum.pdf
CTAN: ../tex-archive/info/pictex/summary/pictexsum.tex
CTAN: ../tex-archive/info/pictex/summary/useful.sty
CTAN: ../tex-archive/info/pictex/summary/ukdate.sty
http://chem.skku.ac.kr/ wpark/tutor/chem/ppchtex/pictexsum.ps

e Eijkhout V. (1992). TgX by topic: a TgXnician’s reference (Addison-Wesley).
This excellent book is now out of print, but Victor Eijkhout has kindly made it
available on-line at http://www.eijkhout.net/tbt/

e Feruglio G. V. (1994). Typesetting commutative diagrams. TUGboat 15 (No. 4),
466-484.

e Hoenig A (1998). TgX Unbound: BIEX and TEX strategies for fonts, graphics, &
more. (Oxford University Press, UK) pp. 580. I1SBN: 0-19-509685-1 (hardback),
0-19-509686-X (paperback).

[see pages 377-389 for details of PICTEX and a summary of commands]

e Holzner S. (1999) Perl Core Language—Little black book. (Technology Press—
The Coriolis Group) ISBN 1-57610-426-5.

e Knuth D. E. (1990). The TgXbook; 19th printing. (Addison-Wesley).

e Lueck U (2008). Documentation for PICTEX.
/texlive/2010/texmf-dist/doc/generic/doc-pictex/Doc-PiCTeX.txt

e Nickalls R. W. D. (1999). MathsPIC: a filter program for use with PICTEX.
EuroTgX 99 Proceedings; 197-210. (Heidelberg, Germany; August 1999). http:
//wuw.uni-giessen.de/~g029/eurotex99/nickalls.pdf [MS-DOS ver-
sion] [reproduced in: Eutupon, No. 3 (October, 1999), 33-49 (the Greek TgX
Friends’ journal)]

127

CTAN: /tex-archive/digests/ttn/ttn1n1.tex
http://www.eijkhout.net/tbt/
/texlive/2010/texmf-dist/doc/generic/doc-pictex/Doc-PiCTeX.txt
http://www.uni-giessen.de/~g029/eurotex99/nickalls.pdf
http://www.uni-giessen.de/~g029/eurotex99/nickalls.pdf

REFERENCES 128

Nickalls R. W. D. (2000). mathsPICpps 2-1
http://www.tex.ac.uk/tex-archive/graphics/mathspic/dos/

Peck A (2008). Beginning GIMP. 2nd ed. (Apress); http://www.apress.com/.

Ramsey N. (1994). Literate programming simplified. IEEE Software; 11(5),
97-105.

Salomon D. (1992). The advanced TgXbook. (Springer)
Salomon D. (1992). Arrows for technical drawing. TUGboat 13 (No. 2), 146—149.

Siart U (date: ?)
http://www.siart.de/typografie/pictex-referenz.pdf [from Lueck
(2008)]

Syropoulos A. (1999). Literate programming: the other side of the coin. RAM
Magazine; 129, 248-253 [in Greek]

Syropoulos A. and Nickalls R. W. D. (2000). A PERL porting of the math-
sPIC graphics package. TUG2000 Annual Meeting, Oxford, UK (August 13-16,
2000). TUGboat, 21, 292-297. http://www.tug.org/TUGboat/articles/
letters/tb21-3/tb68syro.pdf

Syropoulos A and Nickalls RWD (2005). MathsPIC;; 1-0 (http://www.tex.
ac.uk/tex-archive/graphics/mathspic/perl/)
[A Perl filter program for implementing the PICIEX graphics package]

Syropoulos A and Nickalls RWD (2007). MathsPIC,, 1-1 (http://wuw.tex.
ac.uk/tex-archive/graphics/mathspic/perl/)
[A new bug-fix version: February 2007]

Syropoulos A., Tsolomitis A. and Sofroniou N. (2003). Digital typography using
HTEX. (Springer)

Wichura M. J. (1988). PICTEX: Macros for drawing PiCtures TUGboat, 9 (2), pp.
193-197.
http://www.tug.org/TUGboat/Articles/tb09-2/tb21wichura-pictex.
pdf [from Lueck (2008)]

Wichura M. J. (1992). The PICIEX manual. Pub: Personal TgX Inc., 12 Madrona
Avenue, Mill Valley, CA 94941, USA.
texsales@pctex.com, http://www.pctex.com/books.html

http://www.tex.ac.uk/tex-archive/graphics/mathspic/dos/
http://www.apress.com/
http://www.siart.de/typografie/pictex-referenz.pdf
http://www.tug.org/TUGboat/articles/letters/tb21-3/tb68syro.pdf
http://www.tug.org/TUGboat/articles/letters/tb21-3/tb68syro.pdf
http://www.tex.ac.uk/tex-archive/graphics/mathspic/perl/
http://www.tex.ac.uk/tex-archive/graphics/mathspic/perl/
http://www.tex.ac.uk/tex-archive/graphics/mathspic/perl/
http://www.tex.ac.uk/tex-archive/graphics/mathspic/perl/
http://www.tug.org/TUGboat/Articles/tb09-2/tb21wichura-pictex.pdf
http://www.tug.org/TUGboat/Articles/tb09-2/tb21wichura-pictex.pdf

	Title
	Contents
	1 Introduction
	2 Running mathsPICPerl
	2.1 Installation
	2.1.1 The mathsPIC package
	2.1.2 Unix/Linux platform
	2.1.3 MS-Windows platform
	2.1.4 mathspic.sty
	2.1.5 mathspicX.pl

	2.2 Command-line syntax
	2.3 Files
	2.3.1 Filename extensions

	2.4 Switches
	2.5 Removing comment lines
	2.6 Online help
	2.7 The mathsPIC style-option
	2.8 Error-messages
	2.9 Log-file

	3 The mathsPIC script file
	3.1 mathsPIC style option
	3.2 Headers and footers
	3.3 Commands
	3.4 Macros
	3.4.1 Macro library

	3.5 The plotting area
	3.5.1 Axes
	3.5.2 Second y-axis
	3.5.3 Units
	3.5.4 Tick-marks

	3.6 Points
	3.6.1 Point-name
	3.6.2 Point-symbol
	3.6.3 Line-free zone
	3.6.4 Order of points

	3.7 Lines
	3.7.1 Line thickness
	3.7.2 Recommendations

	3.8 Text
	3.9 Variables and constants
	3.9.1 Scalar variables
	3.9.2 Scalar constants
	3.9.3 Mathematics
	3.9.4 Scientific notation

	3.10 The LOOP environment

	4 mathsPIC commands
	4.1 Mathematics
	4.1.1 Macros
	4.1.2 Making a macro library

	4.2 Command definitions
	4.2.1 Backslash
	4.2.2 ArrowShape
	4.2.3 beginLoop ... endLoop environment
	4.2.4 beginSkip ... endSkip environment
	4.2.5 Const
	4.2.6 DashArray
	4.2.7 DrawAngleArc
	4.2.8 DrawAngleArrow
	4.2.9 DrawArrow
	4.2.10 DrawCircle
	4.2.11 DrawCircumcircle
	4.2.12 DrawCurve
	4.2.13 DrawExcircle
	4.2.14 DrawIncircle
	4.2.15 DrawLine
	4.2.16 DrawPerpendicular
	4.2.17 DrawPoint
	4.2.18 DrawRightangle
	4.2.19 DrawSquare
	4.2.20 DrawThickArrow
	4.2.21 DrawThickLine
	4.2.22 InputFile
	4.2.23 LineThickness
	4.2.24 Loop environment
	4.2.25 Paper
	4.2.26 Point
	4.2.27 PointSymbol
	4.2.28 Skip environment
	4.2.29 Show...
	4.2.30 System
	4.2.31 Text
	4.2.32 Var

	4.3 Summary of mathsPIC commands

	5 PiCTeX commands
	5.1 Useful PiCTeX commands
	5.2 Using the $ symbol with PiCTeX

	6 TeX and LaTeX commands
	6.1 Headers and footers
	6.2 thispagestyle{}
	6.3 typeout{}
	6.4 The Color package
	6.5 Other useful LaTeX commands

	7 Examples
	7.1 Input- and output-files
	7.2 Line modes
	7.3 Arrows
	7.4 Circles & colour
	7.5 Functionally connected diagrams
	7.6 Inputting the same data-file repeatedly
	7.6.1 Using the beginloop...endloop environment
	7.6.2 Using LaTeX to cycle a loopcounter

	7.7 Plotting graphs
	7.8 Drawing other curves
	7.9 Scaling
	7.10 Using Perl programs
	7.10.1 Example-1
	7.10.2 Example-2
	7.10.3 Commands for processing the files

	8 Accessing TeX parameter valuesMuch of this chapter was originally presented by RWD Nickalls to the November 2001 ukTUG meeting.
	8.1 Useful TeX commands
	8.2 Outputting data to a file
	8.3 The final code

	9 Miscellaneous
	9.1 Acknowledgements
	9.2 Feedback
	9.3 Development history

	A Tables
	B Arrows
	C Positioning the figures
	C.1 Generating PS, EPS, PDF, JPEG files.
	C.2 Using the figure environment
	C.3 Using the PiCTeX code

	D Installing Perl in MS-Windows
	D.1 Perl
	D.2 Text editors

	E PiCTeX
	E.1 The original files (1986)
	E.2 The new updated files (1994)
	E.3 Pictex2.sty
	E.4 Errorbars.tex
	E.5 DCpic
	E.6 The P.5exICTeX Manual

	References

