
AXODRAW

J.A.M.Vermaseren

NIKHEF-H
P.O. Box 41882

1009 DB Amsterdam

Abstract

Axodraw is a set of drawing primitives for use in LATEX. These can be
used for the drawing of Feynman diagrams, flow charts and simple graph-
ics. Because it uses postscript for its drawing commands it works only
in combination with the dvips of Radical Eye Software which is presently
the most popular dvips program. More will be added in the future. It
allows whole articles including their pictures to be contained in a single
file, thereby making it easier to exchange the article file by e-mail. The
current version1 supports color according to the scheme implemented in
the file colordvi.sty which comes with most TEX distributions.

1An earlier version of Axodraw was published in Comp. Phys. Comm. 83 (1994) 45.

1

1 Using Axodraw

The file axodraw.sty is a style file for LATEX. It should be included in the
documentstyle statement at the beginning of the document. An example would
be:

\documentstyle[a4,11pt,axodraw]{article}

Because axodraw.sty reads also the epsf.sty file that comes with many imple-
mentations of TEX and in particular those that rely on the dvips program by
Radical Eye Software for the printing, this file should be present in the system.
If this file is not available one should obtain it from another system. The file
colordvi.sty is also read, but if it is not present there will be no error. The user
should just not use color in that case. The author feels in no way responsible
for the problems that may occur when a different dvi-to-postscript program is
used.

The drawing is actually done in postscript. Because the above mentioned
dvi-to-postscript converter allows the inclusion of postscript code the graphics
primitives have been included in the file axodraw.sty in terms of postscript. If
another postscript converter is used, one may have to adapt the syntax of the
inclusion of this code to the local system.

The commands of Axodraw should be executed inside either the picture or
the figure environment. Inside this environment it is possible to place objects
at arbitrary positions and put text between them. In principle one could try
to draw objects with the facilities of LATEX itself, but it turns out that the
commands in the picture environment are not very powerful. Axodraw gives
good extensions of them. An example would be

\begin{center} \begin{picture}(300,100)(0,0)

\SetColor{Red}

\GlueArc(150,50)(40,0,180){5}{8}

\SetColor{Green}

\GlueArc(150,50)(40,180,360){5}{8}

\SetColor{Blue}

\Gluon(50,50)(110,50){5}{4} \Vertex(110,50){2}

\Gluon(190,50)(250,50){5}{4} \Vertex(190,50){2}

\end{picture} \\ {\sl A gluon loop diagram} \end{center}

This code would result in:

A gluon loop diagram

2

The syntax and the meaning of these command are explained in the next section.
One should note that all coordinates are presented in units of 1 point. There
are 72 points in an inch. It is possible to use scale transformations if these units
are not convenient.

Currently the primitives are mainly useful for the drawing of Feynman di-
agrams and the drawing of flowcharts. This means that the commands were
designed to draw a number of these graphs. Of course many more things can
be drawn with them, like scatter plots, histograms etc.

The current manual uses only those color commands that are safe on systems
that do not have the required colordvi.sty file. It should however be clear from
the examples how to use the other features. To allow the creation of complicated
color commands that will work also in the absence of the colordvi.sty file there
is a macro IfColor which is described below with the other commands.

2 The commands

The commands that are currently available in Axodraw are (in alphabetic or-
der):

• \ArrowArc(x,y)(r,φ1,φ2)
Draws an arc segment centered around (x,y). The radius is r. The arc-
segment runs counterclockwise from φ1 to φ2. All angles are given in
degrees. In the middle of the segment there will be an arrow.

• \ArrowArcn(x,y)(radius,φ1,φ2)
Draws an arc segment centered around (x,y). The radius is r. The arc-
segment runs clockwise from φ1 to φ2. All angles are given in degrees. In
the middle of the segment there will be an arrow.

• \ArrowLine(x1,y1)(x2,y2)
Draws a line from (x1,y1) to (x2,y2). There will be an arrow in the middle
of the line.

• \BBox(x1,y1)(x2,y2)
Draws a box of which the contents are blanked out. This means that
anything that was present at the position of the box will be overwritten.
The lower left corner of the box is at (x1,y1) and (x2,y2) is the upper right
corner of the box.

• \BBoxc(x,y)(width,height)
Draws a box of which the contents are blanked out. This means that
anything that was present at the position of the box will be overwritten.
The center of the box is at (x,y). Width and height refer to the full width
and the full height of the box.

• \BCirc(x,y){r}
Draws a circle of which the contents are blanked out. This means that
anything that was present at the position of the circle will be overwritten.
The center of the circle is at (x,y). r is its radius.

3

• \Boxc(x,y)(width,height)
Draws a box. The center of the box is at (x,y). Width and height refer
to the full width and the full height of the box.

• \BText(x,y){text}
Draws a box with one line of centered postscript text in it. The box is
just big enough to fit around the text. The coordinates refer to the center
of the box. The box is like a BBox in that it blanks out whatever was at
the position of the box.

• \B2Text(x,y){text1}{text2}
Draws a box with two lines of centered postscript text in it. The box is
just big enough to fit around the text. The coordinates refer to the center
of the box. The box is like a BBox in that it blanks out whatever was at
the position of the box.

• \CArc(x,y)(radius,φ1,φ2)
Draws an arc segment centered around (x,y). The radius is r. The arc-
segment runs counterclockwise from φ1 to φ2. All angles are given in
degrees.

• \CBox(x1,y1)(x2,y2){color1}{color2}
Draws a box. The lower left corner of the box is at (x1,y1) and (x2,y2) is
the upper right corner of the box. The contents of the box are lost. The
color of the box will be color1 and the color of the background inside the
box will be color2.

• \CBoxc(x,y)(width,height){color1}{color2}
Draws a box of which the contents are blanked out. This means that
anything that was present at the position of the box will be overwritten.
The center of the box is at (x,y). Width and height refer to the full width
and the full height of the box. The color of the box will be color1 and the
color of the background inside the box will be color2.

• \CCirc(x,y){radius}{color1}{color2}
Draws a circle around (x,y) with radius r. The contents of the circle are
lost. The color of the box will be color1 and the color of the background
inside the box will be color2.

• \COval(x,y)(h,w)(φ){color1}{color2}
Draws an oval with an internal color indicated by color2. The oval itself
has the color color1. The center of the oval is given by (x,y). Its height is
h, and the width is w. In addition the oval can be rotated counterclock-
wise over φ degrees. The oval overwrites anything that used to be in its
position.

• \CText(x,y){color1}{color2}{text}
Draws a box with one line of centered postscript text in it. The box is
just big enough to fit around the text. The coordinates refer to the center
of the box. The box is like a CBox in that it blanks out whatever was at

4

the position of the box. The color of the box and the text inside is color1
and the background inside has the color color2.

• \C2Text(x,y){color1}{color2}{text1}{text2}
Draws a box with two lines of centered postscript text in it. The box is
just big enough to fit around the text. The coordinates refer to the center
of the box. The box is like a CBox in that it blanks out whatever was at
the position of the box. The color of the box and the text inside is color1
and the background inside has the color color2.

• \Curve{(x1, y1)(x2, y2) · · · (xn, yn)}
Draws a curve through the given points. The x-values are supposed to
be in ascending order. The curve is a combination of quadratic and third
order segments and is continuous in its first and second derivatives.

• \DashArrowArc(x,y)(r,φ1,φ2){dashsize}
Draws a dashed arc segment centered around (x,y). The radius is r. The
arc-segment runs counterclockwise from φ1 to φ2. All angles are given in
degrees. In the middle of the segment there will be an arrow. The size of
the dashes is approximately equal to ‘dashsize’.

• \DashArrowArcn(x,y)(radius,φ1,φ2){dashsize}
Draws a dashed arc segment centered around (x,y). The radius is r. The
arc-segment runs clockwise from φ1 to φ2. All angles are given in degrees.
In the middle of the segment there will be an arrow. The size of the
dashes is approximately equal to ‘dashsize’.

• \DashArrowLine(x1,y1)(x2,y2){dashsize}
Draws a line from (x1,y1) to (x2,y2) with a dashed pattern. The size of the
black parts of the pattern is given by ‘dashsize’. The alternating pieces
have equal length. The size of the pattern is adjusted so that both the
begin and the end are black. Halfway the line there is an arrow.

• \DashCArc(x,y)(radius,φ1,φ2){dashsize}
Draws a dashed arc segment centered around (x,y). The radius is r. The
arc-segment runs counterclockwise from φ1 to φ2. All angles are given in
degrees. The size of the dashes is determined by ‘dashsize’. This size is
adjusted somewhat to make the result look nice.

• \DashCurve{(x1, y1)(x2, y2) · · · (xn, yn)}{ dashsize}
Draws a dashed curve through the given points. The x-values are sup-
posed to be in ascending order. The curve is a combination of quadratic
and third order segments. The size of the black parts and the white parts
will be approximately ‘dashsize’ each. Some adjustment takes place to
make the pattern come out right at the endpoints.

• \DashLine(x1,y1)(x2,y2){dashsize}
Draws a line from (x1,y1) to (x2,y2) with a dashed pattern. The size of the
black parts of the pattern is given by ‘dashsize’. The alternating pieces

5

have equal length. The size of the pattern is adjusted so that both the
begin and the end are black.

• \EBox(x1,y1)(x2,y2)
Draws a box. The lower left corner of the box is at (x1,y1) and (x2,y2) is
the upper right corner of the box.

• \IfColor{arg1}{arg2}
If the file colordvi.sty is present the first argument will be executed. If this
file is not present the second argument will be executed. For examples,
see some of the figures. This command can also be used in the regular
text of the LATEX file.

• \GBox(x1,y1)(x2,y2){grayscale}
Draws a box. The lower left corner of the box is at (x1,y1) and (x2,y2)
is the upper right corner of the box. The contents of the box are lost.
They are overwritten with a color gray that is indicated by the parameter
‘grayscale’. This parameter can have values ranging from 0 (black) to 1
(white).

• \GBoxc(x,y)(width,height){grayscale}
Draws a box. The center of the box is at (x,y). Width and height refer
to the full width and the full height of the box. The contents of the box
are lost. They are overwritten with a color gray that is indicated by the
parameter ‘grayscale’. This parameter can have values ranging from 0
(black) to 1 (white).

• \GCirc(x,y){radius}{grayscale}
Draws a circle around (x,y) with radius r. The contents of the circle are
lost. They are overwritten with a color gray that is indicated by the
parameter ‘grayscale’. This parameter can have values ranging from 0
(black) to 1 (white).

• \GlueArc(x,y)(r,φ1,φ2){amplitude}{windings}
Draws a gluon on an arc-segment. The center of the arc is (x,y) and r is its
radius. The arc segment runs counterclockwise from φ1 to φ2. The width
of the gluon is twice ‘amplitude’, and the number of windings is given by
the last parameter. Note that whether the curls are inside or outside can
be influenced with the sign of the amplitude. When it is positive the curls
are on the inside.

• \Gluon(x1,y1)(x2,y2){amplitude}{windings}
Draws a gluon from (x1,y1) to (x2,y2). The width of the gluon will be
twice the value of ‘amplitude’. The number of windings is given by the
last parameter. If this parameter is not an integer it will be rounded to
an integer value. The side at which the windings lie is determined by the
order of the two coordinates. Also a negative amplitude can change this
side.

6

• \GOval(x,y)(h,w)(φ){grayscale} Draws an oval with an internal color indi-
cated by grayscale. This parameter can have values ranging from 0 (black)
to 1 (white). The center of the oval is given by (x,y). Its height is h, and
the width is w. In addition the oval can be rotated counterclockwise over
φ degrees. The oval overwrites anything that used to be in its position.

• \GText(x,y){grayscale}{text}
Draws a gray box with one line of centered postscript text in it. The box
is just big enough to fit around the text. The coordinates refer to the
center of the box. The box is like a BBox in that it blanks out whatever
was at the position of the box.

• \G2Text(x,y){grayscale}{text1}{text2}
Draws a gray box with two lines of centered postscript text in it. The
box is just big enough to fit around the text. The coordinates refer to the
center of the box. The box is like a BBox in that it blanks out whatever
was at the position of the box.

• \LinAxis(x1,y1)(x2,y2)(ND,d,hashsize ,offset,width)
This draws a line to be used as an axis in a graph. Along the axis are hash
marks. Going from the first coordinate to the second, the hash marks are
on the left side if ‘hashsize’, which is the size of the hash marks, is positive
and on the right side if it is negative. ND is the number of ‘decades’,
indicated by fat hash marks, and d is the number of subdivisions inside
each decade. The offset parameter tells to which subdivision the first
coordinate corresponds. When it is zero, this coordinate corresponds to a
fat mark of a decade. Because axes have their own width, this is indicated
with the last parameter.

• \Line(x1,y1)(x2,y2)
Draws a line from (x1,y1) to (x2,y2).

• \LogAxis(x1,y1)(x2,y2)(NL,hashsize ,offset,width)
This draws a line to be used as an axis in a graph. Along the axis are
hash marks. Going from the first coordinate to the second, the hash marks
are on the left side if ‘hashsize’, which is the size of the hash marks, is
positive and on the right side if it is negative. NL is the number of orders
of magnitude, indicated by fat hash marks. The offset parameter tells
to which integer subdivision the first coordinate corresponds. When it
is zero, this coordinate corresponds to a fat mark, which is identical to
when the value would have been 1. Because axes have their own width,
this is indicated with the last parameter.

• \LongArrow(x1,y1)(x2,y2)
Draws a line from (x1,y1) to (x2,y2). There will be an arrow at the end
of the line.

• \LongArrowArc(x,y)(r,φ1,φ2)
Draws an arc segment centered around (x,y). The radius is r. The arc-

7

segment runs counterclockwise from φ1 to φ2. All angles are given in
degrees. At the end of the segment there will be an arrow.

• \LongArrowArcn(x,y)(radius,φ1,φ2)
Draws an arc segment centered around (x,y). The radius is r. The arc-
segment runs clockwise from φ1 to φ2. All angles are given in degrees. At
the end of the segment there will be an arrow.

• \Oval(x,y)(h,w)(φ) Draws an oval. The center of the oval is given by (x,y).
Its height is h, and the width is w. In addition the oval can be rotated
counterclockwise over φ degrees. The oval does not overwrite its contents.

• \Photon(x1,y1)(x2,y2){amplitude}{wiggles}
Draws a photon from (x1,y1) to (x2,y2). The width of the photon will be
twice the value of ‘amplitude’. The number of wiggles is given by the last
parameter. If twice this parameter is not an integer it will be rounded
to an integer value. Whether the first wiggle starts up or down can be
influenced with the sign of the amplitude.

• \PhotonArc(x,y)(r,φ1,φ2){amplitude}{wiggles}
Draws a photon on an arc-segment. The center of the arc is (x,y) and r
is its radius. The arc segment runs counterclockwise from φ1 to φ2. The
width of the photon is twice ‘amplitude’, and the number of wiggles is
given by the last parameter. Note that the sign of the amplitude influences
whether the photon starts going outside (positive) or starts going inside
(negative). If one likes the photon to reach both endpoints from the
outside the number of wiggles should be an integer plus 0.5.

• \PText(x,y)(φ)[mode]{text}
Places a postscript text. The focal point is (x,y). The text is the last
parameter. The mode parameter tells how the text should be positioned
with respect to the focal point. If this parameter is omitted the center
of the text will correspond to the focal point. Other options are: l for
having the left side correspond to the focal point, r for having the right
side correspond to it, t for having the top at the focal point and b for the
bottom. One may combine two letters as in [bl], as long as it makes sense.
The parameter φ is a rotation angle. The text is written in the current
postscript font. This font can be set with the SetPFont command.

• \rText(x,y)[mode][rotation]{text}
Places a rotated text. The focal point is (x,y). The text is the last
parameter. If the rotation parameter is the character l the text will be
rotated left by 90 degrees, if it is an r it will be rotated to the right by
90 degrees and when it is the character u the text will be rotated by
180 degrees. When there is no character there is no rotation and the
command is identical to the Text command. The mode parameter tells
how the resulting box should be positioned with respect to the focal point.
If this parameter is omitted the center of the box will correspond to the
focal point. Other options are: l for having the left side correspond to

8

the focal point, r for having the right side correspond to it, t for having
the top at the focal point and b for the bottom. One may combine two
letters as in [bl], as long as it makes sense.

• \SetColor{NameOfColor}
Sets the color for the next commands. This command onlt affects the
current picture. In addition it does not affect the text commands that
write in TEX mode. Also the commands that draw gray boxes are not
affected. For influencing the color of the TEX or LATEX output one can
use the commands mentioned in the colordvi.sty file.

• \SetPFont{fontname}{fontsize}
Sets the postscript font to a given type and scale.

• \SetScale{scalevalue}
Changes the scale of all graphics operations. Unfortunately it does not
change the scale of the text operations (yet?). A ‘scalevalue’ of 1 is the
default. It is allowed to use floating point values.

• \SetOffset(x offset,y offset)
Adds the offset values to all coordinates at the TEX level. This makes it
easier to move figures around.

• \SetScaledOffset(x offset,y offset)
Adds the offset values to all coordinates at the postscript level. This is
done after scaling has been applied. Hence one can work with the scaled
coordinates. This can be very handy when drawing curves.

• \SetWidth{widthvalue}
Changes the linewidth in all graphics operations. It does not change the
linewidth of the text operations. That is a matter of font selection. A
‘widthvalue’ of 0.5 is the default. It is allowed to use floating point values.

• \Text(x,y)[mode]{text}
Places a text. The focal point is (x,y). The text is the last parameter.
The mode parameter tells how the text should be positioned with respect
to the focal point. If this parameter is omitted the center of the text will
correspond to the focal point. Other options are: l for having the left side
correspond to the focal point, r for having the right side correspond to it,
t for having the top at the focal point and b for the bottom. One may
combine two letters as in [bl], as long as it makes sense.

• \Vertex(x,y){r}
Draws a fat dot at (x,y). The radius of the dot is given by r.

• \ZigZag(x1,y1)(x2,y2){amplitude}{wiggles}
Draws a zigzag line from (x1,y1) to (x2,y2). The width of the zigzagging
will be twice the value of ‘amplitude’. The number of zigzags is given by
the last parameter. If twice this parameter is not an integer it will be
rounded to an integer value. Whether the first zigzag starts up or down
can be influenced with the sign of the amplitude.

9

A note about color. The names of the colors can be found in the local file
colordvi.sty or colordvi.tex. This file gives also the commands that allow the
user to change the color of the text.

3 Examples

Although the previous section contains all the commands and their proper syn-
tax a few examples may be helpful.

3.1 Text modes

The meaning of the mode characters in the text commands can best be demon-
strated. The statements

\begin{center} \begin{picture}(300,100)(0,0)

\SetColor{BrickRed}

\CArc(50,75)(2,0,360) \Text(50,75)[lt]{left-top}

\CArc(50,50)(2,0,360) \Text(50,50)[l]{left-center}

\CArc(50,25)(2,0,360) \Text(50,25)[lb]{left-bottom}

\CArc(150,75)(2,0,360) \Text(150,75)[t]{center-top}

\CArc(150,50)(2,0,360) \Text(150,50)[]{center-center}

\CArc(150,25)(2,0,360) \Text(150,25)[b]{center-bottom}

\CArc(250,75)(2,0,360) \Text(250,75)[rt]{right-top}

\CArc(250,50)(2,0,360) \Text(250,50)[r]{right-center}

\CArc(250,25)(2,0,360) \Text(250,25)[rb]{right-bottom}

\end{picture} \end{center}

produce 9 texts and for each the focal point is indicated by a little circle. It
looks like

left-top

left-center

left-bottom

center-top

center-center

center-bottom

right-top

right-center

right-bottom

This illustrates exactly all the combinations of the mode characters and what
their effects are. The commands \Text and \rText give a tex according to
LATEX. This text is insensitive to the scaling commands, and the color of the
text should be set with the regular color commands given in colordvi.sty. The
text in the \PText command (and the various boxes with text) is a postscript
text. Such text is sensitive to the scaling commands and in addition the color
is set with the \SetColor command or in the command itself (in the case of
the boxes). In the case of LATEX text it can of course contain different fonts,
math mode and all those little things that are usually easier in LATEX than in
postscript.

10

3.2 The windings of a gluon

Gluons are traditionally represented by a two dimensional projection of a he-
lix. Actually close inspection of some pretty gluons reveals that it is usually
not quite a helix. Hence the gluons in Axodraw are also not quite helices. In
addition one may notice that the begin and end points deviate slightly from
the regular windings. This makes it more in agreement with hand drawn glu-
ons. When a gluon is drawn, one needs not only its begin and end points but
there is an amplitude connected to this almost helix, and in addition there are
windings. The number of windings is the number of curls that the gluon will
have. Different people may prefer different densities of curls. This can effect
the appearance considerably:

\begin{center}

\begin{picture}(330,100)(0,0)

\SetColor{Red}

\Gluon(25,15)(25,95){5}{4} \Text(25,7)[]{4 windings}

\Gluon(95,15)(95,95){5}{5} \Text(95,7)[]{5 windings}

\Gluon(165,15)(165,95){5}{6} \Text(165,7)[]{6 windings}

\Gluon(235,15)(235,95){5}{7} \Text(235,7)[]{7 windings}

\Gluon(305,15)(305,95){5}{8} \Text(305,7)[]{8 windings}

\end{picture}

\end{center}

This code results in:

4 windings 5 windings 6 windings 7 windings 8 windings

The influence of the amplitude is also rather great. The user should experiment
with it. There is however an aspect to the amplitude that should be discussed.
For a straight gluon the amplitude can determine on which side the curls are.
So does the direction of the gluon:

\begin{center}

\begin{picture}(325,100)(0,0)

\SetColor{Red}

\Gluon(50,15)(50,95){5}{6}

\Text(50,7)[]{amp > 0} \Text(40,50)[]{\uparrow}

\Gluon(125,95)(125,15){5}{6}

\Text(125,7)[]{amp > 0} \Text(115,50)[]{\downarrow}

\Gluon(200,15)(200,95){-5}{6}

\Text(200,7)[]{amp < 0} \Text(190,50)[]{\uparrow}

\Gluon(275,95)(275,15){-5}{6}

11

\Text(275,7)[]{amp < 0} \Text(265,50)[]{\downarrow}

\end{picture}

\end{center}

The picture gets the following appearance:

amp > 0

↑

amp > 0

↓

amp < 0

↑

amp < 0

↓

For straight gluons one does not need the option of the negative amplitude.
It is however necessary for gluons on an arc segment. In that case the arc is
always drawn in an anticlockwise direction. Hence the direction is fixed and
only the amplitude is left as a tool for determining the side with the curls.

3.3 Scaling

Sometimes it is much easier to design a figure on a larger scale than it is needed
in the eventual printing. In that case one can use a scale factor, either during
the design or in the final result. We use the figure in the first section as an
example:

\vspace{-10pt} \hfill \\

\SetScale{0.3}

\begin{picture}(70,30)(0,13)

\SetColor{Red}

\GlueArc(120,50)(40,0,180){5}{8}

\SetColor{Green}

\GlueArc(120,50)(40,180,360){5}{8}

\SetColor{Blue}

\Gluon(20,50)(80,50){5}{4} \Vertex(80,50){2}

\Gluon(160,50)(220,50){5}{4} \Vertex(160,50){2}

\end{picture} $+$ others

$ = C_A(\frac{5}{3}+\frac{31}{9}\epsilon)

+ n_F(-\frac{2}{3}-\frac{10}{9}\epsilon)$

\vspace{10pt} \hfill \\

We have lowered the figure by 13 points (the (0,13) in the picture statement)
to make it look nice with respect to the equal sign. The result is

+ others = CA(5
3

+ 31
9

ε) + nF (−2
3
− 10

9
ε)

This way it is rather straightforward to make whole pictorial equations. Of
course some things are not scale invariant. The appreciation of a figure may
be somewhat different when the scale is changed. In the above case one might

12

consider changing the amplitude of the gluons a little bit. Changing this from
5 to 7 and at the same time reducing the number of windings from 4 to 3 for
the straight gluons and from 8 to 7 for the gluons in the arcs gives

+ others = CA(5
3

+ 31
9

ε) + nF (−2
3
− 10

9
ε)

At this scale this may please the eye more.
There is one problem with scaling. Currently it is only possible to have text

scale with the rest of a figure when the text has been printed with the PText
command. This makes the typesetting more complicated, but the scaling of the
TEX pixel fonts would give rather poor results anyway.

3.4 Photons

When drawing photons one should take care that the number of wiggles is
selected properly. Very often this number should be an integer plus 0.5. This
can be seen in the following example:

\begin{center}\begin{picture}(300,56)(0,0)

\Vertex(180,10){1.5} \Vertex(120,10){1.5}

\SetColor{Red}

\ArrowLine(100,10)(200,10)

\SetColor{Green}

\LongArrowArc(150,10)(20,60,120)

\SetColor{Brown}

\PhotonArc(150,10)(30,0,180){4}{8.5} % 8.5 wiggles

\end{picture} \end{center}

This gives the ‘proper’ picture as it would usually drawn by hand:

When the number of wiggles is reduced to 8 we obtain:

This is not as nice. Somehow the symmetry is violated. One should also take
care that the wiggles start in the proper way. If we make the amplitude negative
we see that the photons are not ‘right’ either:

Sometimes these things require some experimenting.

13

3.5 Flowcharts

There are several commands for creating boxes with text in them. This can be
a box with either one line of text or with two lines of text. The rest is just a
matter of drawing lines and circle segments with arrows. If the text is to scale
with the picture one needs to use the postscript fonts. The result of scaling the
TEX fonts is usually rather ugly, because these fonts are pixel fonts. Here we
present an example. It might describe a system for the automatic computation
of cross-sections:

\begin{center} \begin{picture}(320,320)(0,0)

\SetPFont{Helvetica}{10}

\SetScale{0.8}

\SetColor{Magenta}

\ArrowLine(200,40)(200,10) \ArrowLine(200,100)(200,40)

\ArrowLine(200,150)(200,100) \ArrowLine(100,130)(200,100)

\ArrowLine(85,95)(200,100) \ArrowLine(260,105)(200,100)

\ArrowLine(250,135)(200,100) \ArrowLine(160,75)(200,100)

\ArrowLine(200,100)(250,70) \ArrowLine(200,185)(200,150)

\ArrowLine(200,220)(200,185) \ArrowLine(200,250)(200,220)

\ArrowLine(240,263)(200,250) \ArrowLine(240,237)(200,250)

\ArrowLine(200,285)(200,250) \ArrowLine(200,310)(200,285)

\ArrowLine(200,335)(200,310) \ArrowLine(180,360)(200,335)

\ArrowLine(200,385)(180,360) \ArrowLine(50,370)(180,360)

\ArrowArc(200,247.5)(62.5,90,180)

\ArrowArc(200,247.5)(62.5,180,270)

\ArrowLine(210,385)(300,360) \ArrowLine(210,335)(300,360)

\ArrowLine(80,300)(80,130) \ArrowLine(190,335)(80,300)

\ArrowLine(190,385)(80,300) \ArrowLine(50,335)(80,300)

\ArrowLine(300,360)(340,340) \ArrowArcn(205,347.5)(37.5,90,270)

\SetColor{Blue}

\BCirc(200,100){10} \BCirc(200,100){5}

\BCirc(200,40){7.5} \BCirc(200,250){10}

\BCirc(200,250){5} \BCirc(200,310){7.5}

\BCirc(180,360){7.5} \BCirc(80,300){7.5}

\BCirc(300,360){7.5}

\IfColor{\CCirc(200,185){7.5}{Blue}{Yellow}

}{\GCirc(200,185){7.5}{0.9}}

\SetColor{Red}

\BText(200,285){Form program} \BText(200,335){Diagrams}

\BText(200,385){Model} \BText(200,10){events}

\BText(80,95){Axolib} \BText(350,335){Pictures}

\IfColor{\CText(137.5,247.5){Blue}{Yellow}{instructions}

}{\GText(137.5,247.5){0.9}{instructions}}

\B2Text(260,70){Cross-sections}{Histograms}

\B2Text(140,75){Monte Carlo}{Routine}

\B2Text(275,105){FF}{1 loop integrals}

\IfColor{\C2Text(260,135){Blue}{Yellow}{Spiderlib}{Fortran/C}

14

}{\G2Text(260,135){0.9}{Spiderlib}{Fortran/C}}

\IfColor{\C2Text(200,150){Blue}{Yellow}{Matrix}{Element}

}{\G2Text(200,150){0.9}{Matrix}{Element}}

\B2Text(80,130){Kinematics}{Configuration}

\IfColor{\C2Text(200,220){Blue}{Yellow}{Output}{Formula}

}{\G2Text(200,220){0.9}{Output}{Formula}}

\IfColor{\C2Text(260,263){Blue}{Yellow}{Spiderlib}{Form part}

}{\G2Text(260,263){0.9}{Spiderlib}{Form part}}

\IfColor{\C2Text(260,237){Blue}{Yellow}{FF support}{library}

}{\G2Text(260,237){0.9}{FF support}{library}}

\B2Text(40,370){Reaction}{selection}

\B2Text(40,340){Specification}{Cuts, etc.}

\SetColor{Orange}

\PText(211,36)(0)[lb]{Event Generator}

\PText(211,181)(0)[lb]{Code Generator}

\PText(162,258)(0)[lb]{FORM}

\PText(211,301)(0)[lb]{Form program construction}

\PText(191,362)(0)[lb]{Diagram}

\PText(191,352)(0)[lb]{Generator}

\PText(311,370)(0)[lb]{Postscript}

\PText(311,360)(0)[lb]{Generator}

\PText(91,292)(0)[lb]{Kinematics}

\PText(91,282)(0)[lb]{Generator}

\end{picture} \end{center}

This gives the chart

15

Form program

Diagrams

Model

events

Axolib

Pictures

instructions

Cross-sections
Histograms

Monte Carlo
Routine

FF
1 loop integrals

Spiderlib
Fortran/C

Matrix
Element

Kinematics
Configuration

Output
Formula

Spiderlib
Form part

FF support
library

Reaction
selection

Specification
Cuts, etc.

Event Generator

Code Generator

FORM

Form program construction

Diagram
Generator

Postscript
Generator

Kinematics
Generator

3.6 Curves and graphs

Axodraw is equipped with a curve fitting facility that can draw smooth curves
through a set of coordinates. Coupled to this is a set of commands to draw
the axes that are typically needed for the use of graphs and histograms. An
example of a complete picture would be

\begin{center} \begin{picture}(360,440)(0,0)

\SetOffset(40,30)

\LinAxis(0,0)(300,0)(3,10,5,0,1.5)

\LinAxis(0,400)(300,400)(3,10,-5,0,1.5)

\LogAxis(0,0)(0,400)(4,-5,2,1.5)

\LogAxis(300,0)(300,400)(4,5,2,1.5)

\SetScale{100.} \SetWidth{0.005}

\SetColor{Blue}

\Curve{(.1057001,1.2997)(.1057003,1.5399)

(.1057006,1.6908)(.1057010,1.8019)(.1057030,2.0406)

(.1057060,2.1911)(.1057100,2.3020)(.1057300,2.5403)

(.1057600,2.6904)(.1058000,2.8007)(.1060000,3.0365)

(.1080000,3.4512)(.1100000,3.5600)(.1200000,3.6950)

(.1300000,3.6969)(.1500000,3.6308)(.1800000,3.5024)

(.2200000,3.3413)(.3000000,3.0788)(.5000000,2.6374)

(.8000000,2.2295)(1.0000000,2.0357)(1.3000000

16

,1.8078)(1.6000000,1.6275)(2.0000000,1.4336)

(2.5000000,1.2398)(3.0000000,1.0815)}

\SetColor{Red}

\DashCurve{(1.7853600,.0111)(1.7853800,.0228)

(1.7854000,.0339)(1.7856000,.1218)(1.7860000,.2324)

(1.7870000,.3821)(1.7900000,.5786)(1.8000000,.8089)

(1.8200000,.9765)(1.8500000,1.0869)(1.9000000

,1.1718)(2.0000000,1.2335)(2.1000000,1.2468)

(2.2000000,1.2413)(2.4000000,1.2064)

(2.7000000,1.1340)(3.0000000,1.0574)}{0.05}

\SetScale{1.}\SetWidth{0.5}

\SetColor{Blue}

\Line(200,360)(270,360)

\Text(195,360)[r]{\large$e^+e^-\rightarrow\mu^+\mu^-$}

\SetColor{Red}

\DashLine(200,330)(270,330){5}

\Text(195,330)[r]{\large$e^+e^-\rightarrow\tau^+\tau^-$}

\SetColor{Black}

\Text(0,-10)[]{0} \Text(100,-10)[]{1}

\Text(200,-10)[]{2} \Text(300,-10)[]{3}

\Text(150,-25)[]{\large Beam energy in GeV}

\Text(-10,70)[]{1} \Text(-10,170)[]{10}

\Text(-10,270)[]{10^2} \Text(-10,370)[]{10^3}

\rText(-25,220)[][l]{\Largeσ in nb}

\ArrowLine(190,270)(160,300)

\ArrowLine(160,240)(190,270)

\ArrowLine(270,300)(240,270)

\ArrowLine(240,270)(270,240)

\Photon(190,270)(240,270){4}{4.5}

\Vertex(190,270){1.5} \Vertex(240,270){1.5}

\end{picture} \\ {\sl \hskip 10 pt Threshold

effects for μ and τ} \end{center}

and the resulting picture would be

17

e
+
e
− → µ

+
µ
−

e
+
e
− → τ

+
τ
−

0 1 2 3

Beam energy in GeV

1

10

102

103

σ in nb

σ
in

n
b

Threshold effects for µ and τ

Of course one can scale these pictures further, but because the scale factor has
been used to enter the data points these should then be adapted too. Note that
when the scale is blown up by a factor 100, the linewidth has to be scaled down
or disasters will take place.

Finally a playful example:

\begin{center}\begin{picture}(300,56)(0,0)

\SetColor{Blue}

\Line(100,25)(150,25)

\SetColor{Green}

\Gluon(150,25)(200,25){3}{6}

\SetColor{Red}

\Photon(150,35)(200,45){3}{6}

18

\SetColor{Mahogany}

\ZigZag(150,15)(200,5){3}{6}

\IfColor{\COval(150,25)(20,10)(0){Black}{Yellow}

}{\GOval(150,25)(20,10)(0){0.5}}

\end{picture} \end{center}

which results in

Acknowledgement: The author wishes to thank G.J.van Oldenborgh for help
with some of the TEX macros.

Axodraw can be obtained from the authors homepage: http://norma.nikhef.nl/∼t68/axodraw.
Alternatively it is available by means of anonymous ftp from ftp.nikhef.nl.
There it is located in the directory pub/form/axodraw. Commentary and sug-
gestions should be sent to the author at t68@nikhef.nl.

19

