Notomath—LaTeX math support for the noto package

Michael Sharpe

June 3, 2024

This package provides math support for the Google font collection Noto, a massive text font whose <code>KTEX</code> support has been available for several years using Bob Tennent's noto package. The math support is based on newtxmath but there are some wrinkles that make it desirable to craft a small package, notomath, that can serve as a front end to simplify the business of lining up the text and math options, given that there are considerable size discrepancies between text and math at their natural sizes.

For the noto option to newtxmath, the Roman and Greek alphabets in the latter were substituted by those in Noto scaled down by 10% to an x-height of 482, which is a close enough match to the symbols in newtxmath for all practical purposes.

The Noto fonts comprise three different faces: NotoSerif, NotoSans and NotoSansMono. Each face has its own .sty file: noto-serif.sty, noto-sans.sty and noto-mono.sty. There is also an integrated .sty file, noto.sty, though it is a bit less configurable. Most of the time, it should not be necessary to load any of these packages explicitly, that task being relegated to the package notomath.

Usage

For most users, it will likely suffice to place some small variant of the following line in the preamble:

\usepackage{notomath}

The effect of this is:

- load noto-serif and noto-sans scaled down by the factor .9 to an x-height of 482;
- set the main text font to NotoSerif and set \sfdefault to NotoSans;
- the only weight used from the nine available weights are regular and bold, as these are the weights used in newtxmath with options noto and notosans;
- load newtxmath with option noto at natural scale.

Alternatively, the package may be loaded with options that modify the above behaviors:

- mono loads, in addition, noto-mono at the same x-height as the other Noto text packages.
- scale (or scaled) allows you to rescale all the Noto text packages and newtxmath by the specified factor.
- the figure style for NotoSerif and NotoSans may be controlled by the options proportional (or pf) and oldstyle (or osf), as in the noto package. (The default setting is tabular, lining figures.)
- You may add as an option to notomath any newtxmath option that is relevant to noto—these are simply passed along to newtxmath, if truly relevant. (E.g., option vvarbb would be passed along, but not garamondx because that would change all the math italic alphabets to match garamondx.)
- sfdefault changes the main text font to NotoSans, but leaves the meaning of \rmdefault unchanged, so that \textrm{} prints its argument using NotoSerif.

Usage Notes

- There are a couple of issues that might lead you to avoid NotoSansMono as your Typewriter font:
 - In OT1 encoding, the glyphs are not laid out as TEX TYPEWRITER TEXT, as, for example, cmtt. This means you will get incorrect output from text that involves quotes, backslash, braces and the like. (This is not a problem in other encodings such as T1.)
 - The NotoSansMono fonts have no visiblespace glyph, so \verb* will fail to to render the space as something like If this is important to you, replace noto-mono with a package like inconsolata, if you want to try another sans mono font. The loading order is important—you should load inconsolata before loading notomath.
- If you chose the sfdefault option so that NotoSans is the main text font, you may find that a SansMono font if too similar to be easily distinguished from the main font, in which case you may wish to switch to a serifed mono font. If not loading NotoSansMono by means of the option mono, you should load a replacement TT package BEFORE loading notomath if you wish to be able to use the macro \mathtt using glyphs that match those used for \texttt. There are three reasonable options, and possibly more that I'm not aware of. Each would need to be scaled up a bit.
 - The TT package zlmtt does have a visible space glyph and its OT1 encoding is in TEX TYPEWRITER TEXT so \verb and \texttt function correctly even in OT1 encoding. I find the caps too tall to be a very good match.
 - The TT package newtxtt does have a visiblespace glyph and works well in T1 encoding. There is no OT1 encoded version currently. Caps are a bit too tall to be a very good match.
 - The TT package nimbusmononarrow does have a visiblespace glyph and its OT1 encoding is in TEX TYPEWRITER TEXT so \verb and \texttt function correctly even in OT1 encoding. Caps are not too tall—this is my preferred serifed TT with NotoSans text.

Example preamble fragments

EXAMPLE 1:

•

\usepackage[mono,vvarbb,upint]{notomath}

% load NotoSerif, NotoSans, NotoSansMono, mainfont=NotoSerif

% options vvarbb and upint passed to newtxmath, resulting in

% STIX Blackboard Bold and upright integrals rather than slanted

The Noto fonts will be scaled to x-height 482, matching math symbols. The main text font will be NotoSerif.

EXAMPLE 2:

\usepackage[varq,varl]{inconsolata} % inconsolata sans mono

\usepackage[vvarbb,uprightscript]{notomath}

% load NotoSerif, NotoSans, mainfont=NotoSerif

% options vvarbb and uprightscript passed to newtxmath, resulting in

% STIX Blackboard Bold and upright script

The Noto fonts will be scaled to x-height 482, matching math symbols. The main text font will be NotoSerif.

EXAMPLE 3:

```
\usepackage[scaled=1.12]{nimbusmononarrow}% typewriter font
\usepackage[sfdefault,subscriptcorrection]{notomath}
% load NotoSerif, NotoSans, mainfont=NotoSans
% option subscriptcorrection passed to newtxmath
```

will output the Noto fonts scaled to x-height 482 with matching math symbols. The main text font will be Noto-Sans.

EXAMPLE 4:

```
\usepackage[scaled=1.24]{nimbusmononarrow}% typewriter font
\usepackage[scale=1.11,sfdefault,pf,osf]{notomath}
% load NotoSerif, NotoSans, mainfont=NotoSans
% option subscriptcorrection passed to newtxmath
```

will output the Noto fonts scaled to x-height 536 with matching math symbols. The main text font will be NotoSans with proportional oldstyle figures except in math, which always uses tabular lining figures.

The examples above all work with pdflatex, and with xelatex if some additional rules are followed. With xelatex, the lines in the above examples must precede the loading of fontspec, which must use the option nomath. After that, one may load any text fonts required for secondary use, or even replace the main Noto fonts.

Subscript Correction

The spacing of math letters was adjusted so the superscripts would not collide with the base letters. This was necessary mainly for letters like *j*, *f*, *y* and β as superscripts and like *D* and Ω as base letters. As a result of these adjustments, some of the formerly problematic superscript letters become problematic subscript letters. Two files are provided to make adjustments to the letter by inserting appropriate kerns when that letter is the first character in a subscript—one for NotoSerif and one for NotoSans letters, under the respective names

```
newtx-noto-subs.tex % for NotoSerif
newtx-notosans-subs.tex
```

The appropriate file is read in by newtxmath provided you add the option subscriptcorrection. A line in the file of the form $\{j\}$ $\{-2\}$ will translate to a kern of -2mu being placed before a leading *j* in a subscript.

Lower level settings

It may be that you wish to make use of lower level settings in the individual noto- packages. In that case, the following information may be useful.

Recall from the README to the noto:

- \usepackage{noto}
 - loads NotoSerifas \rmdefault;
 - loads NotoSans as \sfdefault;
 - loads NotoSansMono as \ttdefault;
 - lets \familydefault to \rmdefault;
 - so, main body text is NotoSerif, \textsf points to NotoSans and \texttt to NotoSansMono.
 - The scale option does not affect NotoSerif size.
- \usepackage{noto-serif}
 - loads NotoSerif as \rmdefault;
 - lets \familydefault to \rmdefault;
 - neither NotoSans nor NotoSansMono is loaded.
 - scale option available.

- \usepackage{noto-sans}
 - loads NotoSans as \sfdefault;
 - does not modify \familydefault;
 - neither NotoSerif or NotoSansMono is loaded.
 - scale option available.
- \usepackage[sfdefault]{noto-sans}
 - loads NotoSans as \sfdefault;
 - lets \familydefault to \sfdefault
 - neither NotoSerif or NotoSansMono is loaded and NotoSans becomes the main text font.
 - scale option available.
- \usepackage{noto-mono}
 - loads NotoSansMono as \ttdefault;
 - neither NotoSerif or NotoSans is loaded.
 - scale option available.

At its lowest level, you invoke NotoMath in newtxmath using the option noto, and NotoSansMath using the option notosans.

Math samples

An inversion formula: Let $g : \mathbb{R}^+ \to \mathbb{R}$ be bounded and right continuous, and let $\varphi(\alpha) \coloneqq \int_0^\infty e^{-\alpha t} g(t) dt$ denote its Laplace transform. Then, for every t > 0,

$$g(t) = \lim_{\varepsilon \to 0} \lim_{\lambda \to \infty} \varepsilon^{-1} \sum_{\lambda t < k \le (\lambda + \varepsilon)t} \frac{(-1)^k}{k!} \lambda^k \varphi^{(k)}(\lambda).$$
(1)

1.

Solutions of systems of ODEs: Let $\mathbf{v}(\mathbf{x}, \boldsymbol{\alpha})$ denote a parametrized vector field ($\mathbf{x} \in U, \boldsymbol{\alpha} \in A$) where U is a domain in \mathbb{R}^n and the parameter space A is a domain in \mathbb{R}^m . We assume that \mathbf{v} is C^k -differentiable as a function of $(\mathbf{x}, \boldsymbol{\alpha})$, where $k \ge 2$. Consider a system of differential equations in U:

$$\mathbf{x} = \mathbf{v}(\mathbf{x}, \boldsymbol{\alpha}), \qquad \mathbf{x} \in U$$
 (2)

Fix an initial point \mathbf{p}_0 in the interior of U, and assume $\mathbf{v}(\mathbf{p}_0, \boldsymbol{\alpha}_0) \neq \mathbf{0}$. Then, for sufficiently small t, $|\mathbf{p} - \mathbf{p}_0|$ and $|\boldsymbol{\alpha} - \boldsymbol{\alpha}_0|$, the system (2) has a unique solution $\mathbf{x}_{\boldsymbol{\alpha}}(t)$ satisfying the initial condition $\mathbf{x}_{\boldsymbol{\alpha}}(0) = \mathbf{p}$, and that solution depends differentiably (of class C^k) on t, \mathbf{p} and $\boldsymbol{\alpha}$.

Stirling's formula:

$$\Gamma(z) \sim e^{-z} z^{z-1/2} \sqrt{2\pi} \left[1 + \frac{1}{12z} + \frac{1}{288z^2} - \frac{139}{51840z^3} + \dots \right], \quad z \to \infty \text{ in } |\arg z| < \pi.$$
(3)

Bézier curves: Given z_1 , z_2 , z_3 , z_4 in \mathbb{C} , define the Bézier curve with control points z_1 , z_2 , z_3 , z_4 by

$$z(t) \coloneqq (1-t)^3 z_1 + 3(1-t)^2 t z_2 + 3(1-t)t^2 z_3 + t^3 z_4, \qquad 0 \le t \le 1.$$

Because $(1-t)^3 + 3(1-t)^2t + 3(1-t)t^2 + t^3 = (1-t+t)^3 = 1$ and all summands are positive for $0 \le t \le 1$, z(t) is a convex combination of the four points z_k , hence the curve defined by z(t) lies in their convex hull. As t varies from 0 to 1, the curve moves from z_1 to z_4 with initial direction $z_2 - z_1$ and final direction $z_4 - z_3$.

Maxwell's equations:

$$\mathbf{B}' = -c\nabla \times \mathbf{E}$$
$$\mathbf{E}' = c\nabla \times \mathbf{B} - 4\pi \mathbf{J}.$$

Residue theorem: Let *f* be analytic in the region *G* except for the isolated singularities $a_1, a_2, ..., a_m$. If γ is a closed rectifiable curve in *G* which does not pass through any of the points a_k and if $\gamma \approx 0$ in *G*, then

$$\frac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^m n(\gamma;a_k)\operatorname{Res}(f;a_k).$$

Maximum modulus principle: Let *G* be a bounded open set in \mathbb{C} and suppose that *f* is a continuous function on \overline{G} which is analytic in *G*. Then

$$\max\{|f(z)|: z \in \overline{G}\} = \max\{|f(z)|: z \in \partial G\}.$$

Jacobi's identity: Define the *theta function* ϑ by

$$\vartheta(t) = \sum_{n=-\infty}^{\infty} \exp(-\pi n^2 t), \qquad t > 0.$$

Then

$$\vartheta(t) = t^{-1/2} \vartheta(1/t).$$

The following three samples show the previous three reworked using NotoSerif and its associated math fonts.

Residue theorem: Let *f* be analytic in the region *G* except for the isolated singularities $a_1, a_2, ..., a_m$. If *y* is a closed rectifiable curve in *G* which does not pass through any of the points a_k and if $y \approx 0$ in *G*, then

$$\frac{1}{2\pi i}\int_{\gamma}f=\sum_{k=1}^{m}n(\gamma;a_k)\operatorname{Res}(f;a_k).$$

Maximum modulus principle: Let *G* be a bounded open set in \mathbb{C} and suppose that *f* is a continuous function on \overline{G} which is analytic in *G*. Then

$$\max\{|f(z)|: z \in G\} = \max\{|f(z)|: z \in \partial G\}.$$

Jacobi's identity: Define the *theta function* ϑ by

$$\vartheta(t)=\sum_{n=-\infty}^{\infty}\exp(-\pi n^2t),\qquad t>0.$$

Then

$$\vartheta(t) = t^{-1/2} \vartheta(1/t).$$

Font Tables

SANS MATH LETTERS

	Ю	1	2	3	4	5	б	7	
00x	Γο	∆ 1	Θ2	Лз	Ξ4	П₅	Σ6	Y 7	″0x
01x	${\cal P}_8$	ψ_9	Ω10	α11	β 12	Y 13	$\delta_{^{14}}$	€ 15	
02x	$\zeta_{^{16}}$	η ₁₇	θ_{18}	L 19	K 20	λ ₂₁	µ22	V 23	″1x
03x	ξ_{24}	π25	ρ ₂₆	0 27	τ ₂₈	U 29	\$ 30	X ³¹	
04x	ψ ₃₂	W 33	E 34	ϑ 35	D 36	Q 37	ς ₃₈	\$\$ 39	<i>"</i> 2
05x	<u>∠_</u> 40	<u>√</u> 41	<u> </u>		۲ ₄₄	> ₄₅	▶46	4 47	″2x
06x	O 48	1 49	250	351	452	553	654	755	"2
07x	8 56	9 57	.58	,59	<60	/61	>62	★63	″3x
10x	∂ ₆₄	A 65	B 66	C 67	D 68	<i>E</i> 69	F ₇₀	G 71	″ A
'11x	H ₇₂	<i>I</i> ₇₃	J 74	K 75	L76	M 77	N 78	O 79	″4x
12x	P 80	Q 81	R 82	S 83	T 84	U ₈₅	V ₈₆	W 87	<i>″</i> Г
13x	X88	Y 89	Z90	D 91	4 92	\$ 93	 94	_ 95	″5x
14x	ℓ 96	a 97	b 98	C 99	d ₁₀₀	e 101	f 102	g ₁₀₃	".
′15x	h 104	i 105	j 106	k 107	l 108	<i>m</i> 109	n 110	O 111	<i>″</i> 6x
16x	p 112	q 113	r 114	S 115	t 116	U 117	V 118	W 119	<i>"</i> "
17x	X 120	y 121	Z 122	l 123	J 124	\$ 7125	→ 126	127	~7x
20x	128	X 129	130	131	O ₁₃₂	1 133	2 ₁₃₄	3 135	<i>″</i> 0
21x	4 136	5 137	6138	7 139	8140	9 ₁₄₁	A 142	B 143	″8x
22x	C 144	D145	E 146	F 147	G148	H 149	I 150	J 151	″9x
23x	K 152	L153	M 154	N155	Ø156	P157	Q158	\mathscr{R}_{159}	9X
24x	S160	\mathcal{T}_{161}	\mathscr{U}_{162}	V/163	W 164	$\mathscr{X}_{^{165}}$	Y166	£167	″ ٦
25x	æ 168	C 169	€170	d 171	€172	£173	G 174	ħ175	"Ax
26x	i 176	J 177	Ŕ 178	<i>l</i> 179	M 180	N 181	<i>O</i> -182	12 183	″Bx
27x	A 184	1 ∕185	J 186	ŧ 187	U 188	V 189	W 190	x_{191}	DX
30x	Y 192	% 193	U 194	J 195	A 196	B 197	C198	D199	<i>"</i>
31x	E200	F201	G202	H203	J ₂₀₄	J ₂₀₅	K206	L207	″Cx
32x	M 208	N 209	O ₂₁₀	P ₂₁₁	Q212	R213	S ₂₁₄	T 215	″D
'33x	U216	V 217	W 218	X 219	Y220	£221	Q .222	C -223	″Dx
34x	C 224	d225	e 226	€227	g 228	ħ229	i230	j 231	″E
35x	R232	<i>ℓ</i> ₂₃₃	1M234	n 235	O 236	p237	Q ,238	1 ⁴ 239	″Ex
36x	3 240	t ₂₄₁	U242	U 243	W 244	X245	Y 246	X247	″Fx
37x	L 248	J 249	250	251	252	253	254	255	rx
	″8	<i>″</i> 9	″A	″В	″C	″D	″E	″F	

SANS MATH LETTERSA

	0	1	2	3	4	5	б	7	
00x	Го	Δ1	Θ2	Λ3	Ξ4	П₅	Σ6	Y ₇	″0x
01x	Φ	Ψ,	Ω10	α11	β 12	γ 13	δ ₁₄	E 15	
'02x	ζ16	η ₁₇	θ18	L 19	K 20	λ ₂₁	μ22	V23	″1x
′03x	ξ_{24}	π25	ρ ₂₆	σ27	τ ₂₈	U 29	ф30	χ ³¹	
'04x	ψ32	ω33	E 34	8 35	W 36	Q 37	ς ₃₈	фз9	<i>″</i> .2
05x	40	41	42	O 43	1 44	245	3 46	4 47	″2x
'06x	548	649	750	851	9 ₅₂	53	¢54	⊅55	″3x
′07x	∉56	∌57	:=58	=:59	≠60	=61	{ ₆₂	} ₆₃	JX
'10x	∂_{64}	A62	\mathfrak{B}_{66}	C ₆₇	D68	E 69	F 70	(5 71	″4x
'11x	\mathfrak{H}_{72}	3 73	3 74	R 75	L 76	M77	N 78	D79	4X
'12x	\mathfrak{P}_{80}	Q 81	R 82	S83	\mathfrak{T}_{84}	\mathfrak{U}_{85}	\mathfrak{V}_{86}	\mathfrak{W}_{87}	″5.v
'13x	\mathfrak{X}_{88}	\mathfrak{Y}_{89}	390	ħ 91	ħ92	λ 93	Z 94	Å ₉₅	~ ~5x
'14x	E ₉₆	a 97	b 98	¢ 99	b 100	e 101	f 102	g 103	<i>″</i> 6x
′15x	$\mathfrak{h}_{^{104}}$	i 105	j 106	Ť 107	L 108	m 109	11 110	D 111	0X
16x	p ₁₁₂	q 113	r 114	\$ 115	t 116	u 117	D 118	W 119	<i>"</i> 7
′17x	X 120	ŋ 121	3 122	123	124	I 125] 126	127	″7x
20x	128	X 129	130	131	A 132	B 133	C 134	D 135	″8x
21x	E 136	F 137	G 138	H 139	I 140	\mathbf{J}_{141}	K 142	L143	ox
'22x	\mathbb{M}_{144}	N 145	O 146	P 147	Q 148	R 149	\$ 150	T 151	″9x
23x	\mathbb{U}_{152}	V 153	W154	X 155	Y 156	Z 157	a 1158	b 159	9X
'24x	C 160	d 161	C 162	f 163	g 164	h 165	İ 166	j 167	″Ax
25x	${f k}_{^{168}}$	1 169	1m 170	11 171	O 172	p 173	q 174	II 175	AX
26x	\$ 176	t 177	U 178	W 179	W180	X 181	Y 182	Z 183	″Bx
27x	1 184] 185	l 186	J 187	$g_{^{188}}$	y 189	190	191	
'30x	192	A ₁₉₃	B 194	C195	D196	E197	F 198	G 199	″C++
'31x	H200	1 201	J202	K203	L204	M205	N206	O ₂₀₇	- ″Cx
'32x	₽208	Q209	R210	\$211	T212	U213	V214	W215	″D.v
'33x	X216	¥217	ℤ218	F 219	∏220	¥221	TC 222	223	″Dx
'34x	224	a l225	b226	C227	Cl228	@ 229	ff230	Q 231	″¤
'35x	h232	1 233	j 234	k235	I ₂₃₆	M 237	N 238	O 239	″Ex
'36x	P 240	Q241	ľ 242	\$243	\$244	U 1245	V 246	W247	- ″Fx
'37x	X248	Y249	Z 250	Å 251	252	253	254	255	rx
	<i>″</i> 8	<i>″</i> 9	″A	″В	″C	″D	″Е	″F	

SERIF MATH LETTERS

	7	б	5	4	3	2	1	Ю	
″0x	Y ₇	Σ_6	Π_5	Ξ_4	Λ_3	O 2	Δ_1	Γ	00x
	E 15	$\delta_{^{14}}$	Y 13	β_{12}	A 11	Ω_{10}	Ψ_9	$arPhi_8$	01x
<i>″</i> 1	V 23	$\mu_{^{22}}$	λ ₂₁	K 20	L 19	$ heta_{18}$	$\eta_{\scriptscriptstyle 17}$	$\zeta_{^{16}}$	02x
″1x	X ³¹	$\phi_{\scriptscriptstyle 30}$	v_{29}	$ au_{28}$	T 27	$ ho_{^{26}}$	$\pi_{^{25}}$	ξ_{24}	03x
<i>"</i> 0	$arphi_{{}^{39}}$	$oldsymbol{\zeta}_{38}$	Q 37	$arpi_{^{36}}$	ϑ_{35}	E 34	ω33	$\psi_{\scriptscriptstyle 32}$	04x
″2x	4 47	▶ ₄₆	> 45	¢ ₄₄	— 43	<u> </u>	\ 4 1	<u>←</u> 40	05x
<i>"</i> ^	755	654	553	452	3 51	2 50	1 49	O 48	06x
″3x	★63	>62	/61	<60	,59	.58	957	856	07x
″ A	G 71	F ₇₀	$E_{^{69}}$	D_{68}	C ₆₇	B_{66}	$A_{ m 65}$	$\partial_{^{64}}$	10x
″4x	O 79	N ₇₈	M 77	$L_{^{76}}$	K 75	J 74	<i>I</i> ₇₃	H_{72}	'11x
″5x	$W_{ m 87}$	$V_{ m 86}$	$U_{ m 85}$	T_{84}	S 83	R 82	$Q_{\scriptscriptstyle 81}$	$P_{\scriptscriptstyle 80}$	12x
эх	(95	9 4	\$ 93	1 92	b ₉₁	Z_{90}	Y_{89}	$X_{^{88}}$	'13x
" "	$g_{\scriptscriptstyle 103}$	$f_{\scriptscriptstyle 102}$	e 101	d_{100}	C 99	b ₉₈	a 97	l 96	'14x
<i>"</i> 6x	O 111	n 110	m 109	l 108	k 107	j 106	i 105	$h_{\scriptscriptstyle 104}$	15x
	W 119	V 118	U 117	t 116	S 115	r 114	$q_{\scriptscriptstyle 113}$	$p_{_{112}}$	16x
″7x	1 27	→ 126	Ø125	J 124	l 123	Z 122	<i>y</i> ¹²¹	X 120	'17x
<i>″</i> 0	3135	2134	1 133	0132	131	130	H 129	128	20x
″8x	B 143	A142	9 141	8140	7139	6138	5137	4136	21x
<i>″</i> 0	J 151	I 150	H 149	G148	\mathcal{F}_{147}	E 146	D145	C 144	22x
″9x	\mathscr{R} 159	Q_{158}	P157	Ø156	\mathcal{N}_{155}	M 154	\mathscr{L}_{153}	K 152	23x
″ ٦	£167	$\mathcal{Y}_{^{166}}$	$\mathscr{X}_{^{165}}$	W 164	V163	$\mathscr{U}_{^{162}}$	\mathcal{T}_{161}	S160	24x
"Ax	ħ 175	G 174	£173	€172	-d 171	€170	C 169	£ 168	25x
″D	12 183	·O-182	N 181	M 180	l 179	<i>k</i> 178	j 177	i 176	26x
″Bx	x191	W 190	V 189	U 188	t 187	J 186	1 ∕185	-G 184	27x
<i>″</i> .	D199	C198	B 197	A196	J 195	ℓ 194	% 193	Y 192	30x
″Cx	L207	K206	J ₂₀₅	J ₂₀₄	H203	G202	F_201	E200	31x
″D	T 215	8214	R213	Q ₂₁₂	P ₂₁₁	©210	N 209	M 208	'32x
″Dx	C-223	0.222	£221	Y220	$\mathfrak{X}_{^{219}}$	W 218	V 217	U216	'33x
″¤	j 231	i230	ħ229	Q 228	¢227	€226	d_{225}	C 224	'34x
″Ex	1' 239	Q 238	p237	O -236	n 235	M234	l_233	k232	35x
- ″Fx	X 247	Y246	X 245	₩ 244	U 243	U242	t ₂₄₁	3240	36x
	255	254	253	252	251	250	J 249	L 248	37x
	″F	″Е	″D	″C	″В	″A	<i>″</i> 9	<i>"</i> 8	

SERIF MATH LETTERSA

	0	1	2	3	4	5	6	7	
<i>Ю0х</i>	Γο	Δ1	Θ2	Λз	Ξ_4	Π5	Σ_6	Y ₇	″0x
<i>01x</i>	Φ_8	Ψ9	Ω_{10}	Q 11	β ₁₂	γ ₁₃	δ14	E 15	
'02x	ζ_{16}	η ₁₇	θ 18	L 19	K 20	λ ₂₁	μ22	V23	″1x
03x	ξ24	π25	ρ ₂₆	σ27	τ ₂₈	U29	ф30	χ ₃₁	1X
′04x	ψ32	ω33	E 34	ϑ 35	W 36	Q37	Ç 38	фз9	″2x
′05х	40	41	42	O 43	1 44	245	346	447	ZX
′06х	548	649	750	851	9 ₅₂	53	¢54	⊅55	″3x
′07x	∉56	∌57	:=58	=:59	≠60	=61	{ ₆₂	} ₆₃	J
'10x	∂ 64	A62	\mathfrak{B}_{66}	C ₆₇	D68	E 69	F 70	(5 71	″4x
′11x	\mathfrak{H}_{72}	3 73	3 74	R 75	L 76	M77	N 78	D79	4X
′12x	\mathfrak{P}_{80}	Q 81	R 82	S83	\mathfrak{T}_{84}	\mathfrak{U}_{85}	\mathfrak{V}_{86}	\mathfrak{W}_{87}	″5.v
′13x	\mathfrak{X}_{88}	$\mathfrak{Y}_{\scriptscriptstyle{89}}$	390	ħ 91	ħ 92	λ ₉₃	Z 94	Å95	″5x
'14x	E ₉₆	a 97	b 98	C 99	b 100	e 101	f 102	g 103	<i>″</i> 6x
′15x	h 104	i 105	İ 106	Ť 107	L ₁₀₈	m 109	n 110	D 111	0X
'16x	p ₁₁₂	q 113	t 114	\$ 115	t 116	u 117	D 118	W 119	<i>"</i> 7
′17x	X 120	ŋ 121	3 122	123	124	1 125] 126	127	~7x
20x	128	X 129	130	131	A132	B 133	C 134	D 135	″8x
'21x	E 136	F 137	G 138	H 139	I 140	\mathbf{J}_{141}	K 142	L143	ox
′22x	M 144	N 145	O 146	P 147	Q 148	R 149	\$ 150	T 151	″9x
'23x	U 152	V 153	W 154	X 155	Y 156	Z 157	a 1158	b 159	3X
'24x	C 160	d 161	C 162	f 163	g 164	h 165	İ 166	j 167	″Ax
25x	k 168	1 169	IM 170	11 171	O 172	p 173	q 174	II 175	AX
'26x	\$ 176	t 177	U 178	W 179	W 180	X 181	Y 182	Z 183	″Bx
′27x	1 184] 185	1 186] 187	$g_{\scriptscriptstyle 188}$	y 189	190	191	
'30x	192	A ₁₉₃	B 194	C195	D196	E197	F198	G 199	″C++
'31x	H200	201	J ₂₀₂	K203	L204	M205	N206	O 207	″Сх
'32x	P ₂₀₈	Q209	R210	\$211	T ₂₁₂	U213	V214	W215	″D17
′33x	X216	¥217	ℤ218	F 219	∏220	¥221	TL 222	223	″Dx
'34x	224	a l225	b226	C227	Cl228	@ 229	f230	U 231	″n
'35x	h232	1 233	J 234	k 235	236	M1237	N 238	O 239	″Ex
'36x	P240	Q241	1 242	\$243	\$244	U 245	V246	W247	- ″Fx
′37x	X248	Y249	Z 250	Å 251	252	253	254	255	
	″8	<i>″</i> 9	″A	″В	″C	″D	″Е	″F	