Design Patternsin KDE

Marc Mutz

Bielefeld University

What Design Patterns are

What they are not

Why would | want to use one?

Case Study: The KDE DOM implementation.

Other Examples of Design Pattern use in KDE and
Qt
Examples of Patterns not yet used in KDE and Qt

Design Patterns in KDE — p.2/22

Design Patterns are

A higher-level language than the programming
language to talk about software systemsin,

A set of general solutions to common problemsin
software engineering,

Definition of Gamma et al: “Design Patterns are descriptions of
communicating objects and classes that are customized to solve a
general design problem in a particular context.”

E.g., In C, Inheritance might be a Design Pattern,
whereas in C++, it’s built into the language.

Design Patterns in KDE — p.3/22

Design Patterns are not
Algorithms such as QuickSort or Boyer-Moore.

L anguage features, such as polymorphism or
exceptions.

|mplementation patterns, such as the d-pointer or
the virtual hook.

Software components such as toolkits and
HENEWIE

Design Patterns in KDE — p.4/22

Short answer: Because It makes you a better programmer.
Long answer: On learning Design Patterns, you will find that you
have known and implemented at least some of the patterns already.

You may have copied code or ideas, or you might have solved the
problem yourself.

What you more often than not have not done is think of the solution
as a pattern to re-apply whenever a similar problem arises again.

And almost certainly, you haven’t named them and put them in a
catalog to refer to for inspiration and discussions about design.

Design Patterns in KDE — p.5/22

A Case Study: KDE's DOM
| mplementation

Case Study: DOM: Factory Method

DOM : Docunent implementsthe Factory Method
pattern:

cl ass Docunent : public Node {
[l ...

/[l Al of these are Factory Mt hods:
El enent createEl enent(...);
Attr createAttribute(...);

Event createEvent(...);
[l ...

}i

Factory M ethods abstract away the creation of objects.
Thisis essential if you want to hide the implementation
and only want to export the interface.

Design Patterns in KDE — p.7/22

Almost all DOM classes implement the Bridge pattern
(ak.a. Handle):

Node (the Abstractor) contains a member of type
Nodel npl (the lmplementor)

El enent (the Refined Abstractor) inherits Node

This pattern is not a d-pointer:

d-pointer involves a dumb Data Object with no
pehavior.

mplementor is stand-alone (contains all data and
pehavior).

Design Patterns in KDE — p.8/22

The Node-derived DOM classes implement the
Composite pattern:

For a basic interface (Node), there are two classes of
Implementations:

L eaves (Text , Conment) that contain no further
children.

Composites (El enent , At t r) that may have one
or more children.

The important aspect of this pattern is that container

classes here implement the interface of the objects they
contain.

Design Patterns in KDE — p.9/22

Event , together with
Nodel npl : : di spat chEvent () implementsa
variant of the Chain of Responsibility pattern:

Handler (Node) objects hold references to other
Handlers, thus forming an object chain.

A handl eRequest () method on Handler either
handles the request or passes it on to the next
Handler in the chain.

Typically, Handler will be an interface so that the class
of each Handler in the chain can be different.

Thisis not the Chain of Responsibility asthe book says,
but ssmilar enough.

Design Patterns in KDE — p.10/22

The Event Li st ener classimplementsthe Observer
pattern:

A Subject (Node) registers Observers
(Event LI st ener)

On state change, Subject calls Observer’s single
method, inthiscase handl eEvent (Event &)

You'll find few Observersin KDE, since Qt’s signal/slot
mechanism reduces the need for this pattern.

Subjects know their type, so Observers can also be
Visitors.

Design Patterns in KDE — p.11/22

er Examples of Design Pattern
Usein KDE/Qt

Design Patterns Use: Factories

Both Abstract Factory and Factory Method are
Implemented in QText Codec:

cl ass Qrlext Codec {
[l ...
stati c Qlext Codec *

codecFor Nane(const char * nane, ...);
[/
vi rtual Qlext Decoder * nmkeDecoder () const,;
vi rtual QTlext Encoder * nmakeEncoder() const;
[/

Design Patterns in KDE — p.13/22

KDE/Qt Design Pattern Use: Bullder

KSI eve: : Par ser implementsthe Builder pattern:
Instead of constructing an explicit parsetree, it calls
methods inthe KSI eve: : Scri pt Bui | der interface:

cl ass Scri ptBuil der {

Il ...
vi rtual
vi rtual
vi rtual
vi rtual
vi rtual
Il ...

voi d
voi d
voi d
voi d
voi d

commandStart(const QString & identifier) = 0
commandEnd() = O;

t aggedAr gunent (const QString & tag) = O;
stringArgunent(const Qstring & str, ...) = 0;
nunber Ar gunent (unsi gned | ong nunber) = O;

Design Patterns in KDE — p.14/22

|mplementations of this interface can reuse the parser to
do totally different things, such as pretty-printing the
script, creating a DOM-like object tree, test the

parser. ..

class PrettyPrintingScriptBuil der {

...

voi d commandStart(const QString & id) {
nStream << Qstring().fill(" ', mndent) << id;

}

voi d commandEnd() { nftream << endl; }

voi d nunber Argunent (unsigned | ong num) { nStream << num }
Il ...
private:

Qlext St ream ntt r eam

i nt m ndent;

}) Design Patterns in KDE — p.15/22

QFr ane implements the Decor ator pattern:
QFr ane: IsaQW dget , decorates one with a

porder.
QScrol | Vi ew. IsaQW dget , decorates one with
scrollbar(s).

The pattern hereis:
Basic interface (QW dget)
Concrete implementations (QPushBut t on, etc)

Decorator implementations that contain a member of
basic type, which they decorate with additional state
or functionality.

Design Patterns in KDE — p.16/22

There are two examples of Strategy implementations in
KMalil:

AttachmentStrategy Encapsulates an algorithm to
decide which attachments to display.

Header Strategy Encapsulates an algorithm to decide
which header fields to display.

The pattern hereis:
Base interface (At t achnent St r at egy)

Concrete implementations
({lconic, Smart,...}Attachnent Str at egy).

Context class that refers to a member of the abstract
type to perform tasks.

Design Patterns in KDE — p.17/22

Design Pattern Use: Strategy ||

cl ass Attachnment Strategy {
virtual bool inlineNestedMessages() const = O;
}s
class | coni cAttachnent Strategy : public Attachnment Strategy {
bool inlineNestedMessages() const { return false; }
};
class Smart Attachnment Strategy : public Attachnment Strategy ({
bool inlineNestedMessages() const { return true; }
}s
cl ass (bj ect TreeParser {
bool processMessageRfc822Subtype(...) {
Il ...
I f (mAttachnent Strategy->inlineNestedMessages()) {
/| expand the nessage
} else {
// make an icon instead

Design Patterns in KDE — p.18/22

| promised to explain the Null Object pattern.
You all know code that looks like this:

1 f (nfFoo)
nFoo- >doSonet hi ng() ;

el se
doSonet hi ngW t hout Foo() ;

If your implementation is cluttered with this type of

code, and ntoo Is State or Strategy-like, you can
refactor to make the code use the Null Object pattern:

Design Patterns in KDE — p.20/22

i f (nFoo)
nmFoo- >doSonet hi ng() ;

el se
doSonet hi ngW t hout Foo() ;

1. Implement nFoo’sinterfacein aNul | Foo class,
where each method’'s implementation consists of the

el se leg of conditionals like the above.

2. Instead of setting nto00 to null to indicate it’s
absence, put areferenceto aNul | Foo instance

there.
3. Remove the conditionals.

Design Patterns in KDE — p.21/22

You've just seen one application of atechnique called
Refactoring

This s supposed to be a slide on refactoring,

but that Is for another talk, at another
conference. ;-)

(or get your hands on the Book(s))

Design Patterns in KDE — p.22/22

	Overview
	What Design Patterns are
	What Design Patterns are not
	Why would I want to use one?
	A Case Study: KDE's DOM Implementation
	Case Study: DOM: Factory Method
	Case Study: DOM: Bridge
	Case Study: DOM: Composite
	DOM: Chain of Responsibility
	Case Study: DOM: Observer
	Other Examples of Design Pattern Use in KDE/Qt
	Design Patterns Use: Factories
	KDE/Qt Design Pattern Use: Builder
	Design Pattern Use: Builder II
	Design Pattern Use: Decorator
	Design Pattern Use: Strategy
	Design Pattern Use: Strategy II
	The Rest
	Patterns not yet used in KDE
	Refactoring: Introduce Null Object
	How to get there?

